
ck
ters
ISO TC184/SC4/WG11 N066

Date: December18, 1998 Supersedes WG11 N052

PRODUCT DATA REPRESENTATION AND EXCHANGE

Part: 1? Title: EXPRESS-X Language Reference Manual
Purpose of this document as it relates to the target document is:
x Primary content Current status: Working Draft

Issue discussion Version
Alternate proposal
Partial content

ABSTRACT:
Draft of EXPRESS-X language reference manual.

KEYWORDS Document status/dates (dd/mm/yy)
EXPRESS Part Documents Other SC4 Documents
EXPRESS-X X Working draft Working
Mapping language Project draft Released

Released draft Confirmed
Technically complete Released
Editorially complete
ISO Committee Draft

Project leader: Martin Hardwick Editor: Peter Denno
Address: STEP Tools, Inc. Address: NIST

1223 Peoples Avenue Quince Orchard Road,
Troy, NY 12180 Gaithersburg, MD 20899
USA USA

Telephone: +1 (518) 276-2848 Telephone: +1 (301) 975-3595
Fax: +1 (518) 276-8471 Fax: +1 (301) 975-4694
E-mail: hardwick@steptools.com E-mail: peter.denno@nist.gov

Comments to Reader:

This draft remains technically and editorially incomplete. It is being distributed to elicit feedba
from interested parties and to allow early prototype implementation to begin. Potential implemen
should be aware of the early and volatile nature of the language.

ISO/NWI 10303- © ISO
ii

© ISO ISO/NWI 10303-

.......

........ 2

........ 2

.....

......... 4
...... 4
...... 4
....... 5
...... 5
...... 5
......... 7

........

........ 9

........ 11
....... 11
..... 11

...... 12

......
.......

.
...... 14
....... 15
..... 17
..... 17
..... 17
... 18
...... 2
.... 21
.... 22
.... 23
.....
.... 24
..... 25
... 25
..... 26
Contents

1. Scope ... 1

2. Normative references .. 2

3. Definitions ... 2
3.1Terms defined in ISO 10303-1 ...
3.2Terms defined in ISO 10303-11 ...
3.3Other definitions.. 3

4. Conformance requirements ..
4.1Formal specifications written in EXPRESS-X ...

4.1.1 Lexical language...
4.2Implementations of EXPRESS-X ..

4.2.1 EXPRESS-X language parser...
4.2.2 EXPRESS-X mapping engine ..

4.3Conformance classes ...

5. Fundamental principles ...7

6. Language specification syntax ..

7. Basic language elements ..
7.1Reserved words ...

7.1.1 Keywords ...

8. Data types .. 12
8.1Complex entity data type ..
8.2View data type ..13
8.3Extent data type ...13

9. Declarations .. 14
9.1Schema_view declaration ...
9.2Schema_map declaration ...
9.3Common clauses of the VIEW and MAP declarations ...

9.3.1 The FROM clause ..
9.3.2 The WHERE clause ...
9.3.3 Identification of view and target instances..

9.4View declaration ...0
9.4.1 View attributes ..
9.4.2 View partitions ...
9.4.3 Specifying subtype views ...

9.5Map declaration ...23
9.5.1 Header of the MAP declaration ..
9.5.2 The SELECT clause ..
9.5.3 Partitions within a MAP declaration ..
9.5.4 Inheritance ...
iii

ISO/NWI 10303- © ISO

......

...... 2
.......27
....... 27
......
.......27

...

......
...
......2
......29
.....30
....30
..... 30

...

...... 31

......3
.....32
.......32
......32
......33
.....33

.
.....
.....36
....
........37
......37
.......37
.......41
.......41

.......

......

......45

........45

.........46
.....46
......46
.......46
...... 47
...... 48
9.6Create declaration ...27
9.7Constant declaration..7
9.8Function declaration ...
9.9Procedure declaration...
9.10Rule declaration ..27
9.11Type map declaration..

10. Scope and visibility ...28
10.1Scope rules ..29
10.2Visibility rules ..29
10.3Explicit item rules ...9

10.3.1 Schema_view ..
10.3.2 View ...
10.3.3 View partition label ...
10.3.4 View expression...

11. Interface specification... 30
11.1Reference interface specification..
11.2Implicit interfaces ...2
11.3SCHEMA_MAP interfaces ..

11.3.1 Source schema interface ..
11.3.2 Target schema interface ..
11.3.3 Map interface ..
11.3.4 External functions ..

12. Expressions ...33
12.1Explicit binding ..33
12.2Partial explicit binding ...
12.3Inline views ...37
12.4Operations on extents ..
12.5View expression evaluation ..
12.6FOR expression ..
12.7Conditional expression ...
12.8CASE expression ...

13. Executable statements ...42
13.1FOR clause ..42

14. Built-in functions and procedures ..

15. Execution model semantics ..
15.1Reference of source (and target) schemas ..
15.2Inclusion of externally defined functions ...
15.3Import of mappings ...
15.4Type mapping ..
15.5The FROM clause ...
15.6The WHERE clause ..
iv

© ISO ISO/NWI 10303-

.... 49
..... 50
..
...... 51
....... 51
..... 52

....... 53
15.7The IDENTIFIED_BY clause ..
15.8The SELECT clause ..
15.9Partitions ... 51
15.10Network mapping ...
15.11The FOR statement ..
15.12Explicit binding ...

(normative)
EXPRESS-X language syntax...

(informative)
Bibliography .. 60
v

ISO/NWI 10303- © ISO
vi

© ISO ISO/NWI 10303-

tand-
arried
hnical
organi-
col-

s of

ies for
bodies

s and

ace;

;

data

tories

ct test
Foreword

The International Organization for Standardization (ISO) is a worldwide federation of national s
ards bodies (ISO member bodies). The work of preparing International Standards is normally c
out through ISO technical committees. Each member body interested in a subject for which a tec
committee has been established has the right to be represented on that committee. International
zations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
laborates closely with the International Electrotechnical Commission (IEC) on all matter
electrotechnical standardization.

Draft International Standards adopted by technical committees are circulated to the member bod
voting. Publication as an International Standard requires approval by at least 75% of the member
casting a vote.

International Standard ISO 10303-1???was prepared by Technical Committee ISO/TC 184,Industrial
automation systems and integration, Subcommittee SC4,Industrial data.

ISO 10303 consists of the following parts under the general title Industrial automation system
integration - Product data representation and exchange:

– Part 1, Overview and fundamental principles;

– Part 11, Description methods: The EXPRESS language reference manual;

– Part 12, Description methods: The EXPRESS-I language reference manual;

– Part 21, Implementation methods: Clear text encoding of the exchange structure;

– Part 22, Implementation methods: Standard data access interface specification;

– Part 23, Implementation methods: C++ language binding to the standard data access interf

– Part 24, Implementation methods: C language binding to the standard data access interface

– Part 26, Implementation methods: Interface definition language binding to the standard
access;

– Part 31, Conformance testing methodology and framework: General concepts;

– Part 32, Conformance testing methodology and framework: Requirements on testing labora
and clients;

– Part 33, Conformance testing methodology and framework: Structure and use of abstra
suites;

– Part 34, Conformance testing methodology and framework: Abstract test methods;
vii

ISO/NWI 10303- © ISO

ple-

n;
– Part 35, Conformance testing methodology and framework: Abstract test methods for SDAI im
mentations;

– Part 41, Integrated generic resource: Fundamentals of product description and support;

– Part 42, Integrated generic resources: Geometric and topological representation;

– Part 43, Integrated generic resources: Representation structures;

– Part 44, Integrated generic resources: Product structure configuration;

– Part 45, Integrated generic resources: Materials;

– Part 46, Integrated generic resources: Visual presentation;

– Part 47, Integrated generic resources: Shape variation tolerances;

– Part 49, Integrated generic resources: Process structure and properties;

– Part 101, Integrated application resources: Draughting;

– Part 104, Integrated application resources: Finite element analysis;

– Part 105, Integrated application resources: Kinematics;

– Part 106, Integrated application resources: Building construction core model;

– Part 201, Application protocol: Explicit draughting;

– Part 202, Application protocol: Associative draughting;

– Part 203, Application protocol: Configuration controlled design;

– Part 204, Application protocol: Mechanical design using boundary representation;

– Part 205, Application protocol: Mechanical design using surface representation;

– Part 207, Application protocol: Sheet metal die planning and design;

– Part 208, Application protocol: Life cycle management - Change process;

– Part 209, Application protocol: Composite and metallic structural analysis and related desig

– Part 210, Application protocol: Electronic assembly, interconnect, and packaging design;

– Part 212, Application protocol: Electrotechnical design and installation

– Part 213, Application protocol: Numerical control process plans for machined parts;
viii

© ISO ISO/NWI 10303-

tronic

ocess

n for

ining

n for

ification
– Part 214, Application protocol: Core data for automotive design;

– Part 215, Application protocol: Ship arrangement;

– Part 216, Application protocol: Ship moulded forms;

– Part 217, Application protocol: Ship piping;

– Part 218, Application protocol: Ship structures;

– Part 220, Application protocol: Process planning, manufacture, and assembly of layered elec
products;

– Part 221, Application protocol: Functional data and their schematic representation for pr
plant;

– Part 222, Application protocol: Exchange of product data for composite structures;

– Part 223, Application protocol: Exchange of design and manufacturing product informatio
casting parts;

– Part 224, Application protocol: Mechanical product definition for process plans using mach
features;

– Part 225, Application protocol: Building elements using explicit shape representation;

– Part 226, Application protocol: Ship mechanical systems;

– Part 227, Application protocol: Plant spatial configuration;

– Part 228, Application protocol: Building services: Heating, ventilation, and air conditioning;

– Part 229, Application protocol: Exchange of design and manufacturing product informatio
forged parts;

– Part 230, Application protocol: Building structural frame: Steelwork;

– Part 231, Application protocol: Process engineering data: Process design and process spec
of major equipment;

– Part 232, Application protocol: Technical data packaging core information and exchange;

– Part 301, Abstract test suite: Explicit draughting;

– Part 302, Abstract test suite: Associative draughting;

– Part 303, Abstract test suite: Configuration controlled design;
ix

ISO/NWI 10303- © ISO

ctronic

 plant;

cast-

g fea-

n for
– Part 304, Abstract test suite: Mechanical design using boundary representation;

– Part 305, Abstract test suite: Mechanical design using surface representation;

– Part 307, Abstract test suite: Sheet metal die planning and design;

– Part 308, Abstract test suite: Life cycle management - Change process;

– Part 309, Abstract test suite: Composite and metallic structural analysis and related design;

– Part 310, Abstract test suite: Electronic assembly, interconnect, and packaging design;

– Part 312, Abstract test suite: Electrotechnical design and installation;

– Part 313, Abstract test suite: Numerical control process plans for machined parts;

– Part 314, Abstract test suite: Core data for automotive mechanical design;

– Part 315, Abstract test suite: Ship arrangement;

– Part 316, Abstract test suite: Ship moulded forms;

– Part 317, Abstract test suite: Ship piping;

– Part 318, Abstract test suite: Ship structures;

– Part 320, Abstract test suite: Process planning, manufacture, and assembly of layered ele
products;

– Part 321, Abstract test suite: Functional data and their schematic representation for process

– Part 322, Abstract test suite: Exchange of product data for composite structures;

– Part 323, Abstract test suite: Exchange of design and manufacturing product information for
ing parts;

– Part 324, Abstract test suite: Mechanical product definition for process plans using machinin
tures;

– Part 325, Abstract test suite: Building elements using explicit shape representation;

– Part 326, Abstract test suite: Ship mechanical systems;

– Part 327, Abstract test suite: Plant spatial configuration;

– Part 328, Abstract test suite: Building services: Heating, ventilation, and air conditioning;

– Part 329, Abstract test suite: Exchange of design and manufacturing product informatio
x

© ISO ISO/NWI 10303-

cation of

arts of
forged parts;

– Part 330, Abstract test suite: Building structural frame: Steelwork;

– Part 331, Abstract test suite: Process engineering data: Process design and process specifi
major equipment;

– Part 332, Abstract test suite: Technical data packaging core information and exchange;

– Part 501, Application interpreted construct: Edge-based wireframe;

– Part 502, Application interpreted construct: Shell-based wireframe;

– Part 503, Application interpreted construct: Geometrically bounded 2D wireframe;

– Part 504, Application interpreted construct: Draughting annotation;

– Part 505, Application interpreted construct: Drawing structure and administration;

– Part 506, Application interpreted construct: Draughting elements;

– Part 507, Application interpreted construct: Geometrically bounded surface;

– Part 508, Application interpreted construct: Non-manifold surface;

– Part 509, Application interpreted construct: Manifold surface;

– Part 510, Application interpreted construct: Geometrically bounded wireframe;

– Part 511, Application interpreted construct: Topologically bounded surface;

– Part 512, Application interpreted construct: Faceted boundary representation;

– Part 513, Application interpreted construct: Elementary boundary representation;

– Part 514, Application interpreted construct: Advanced boundary representation;

– Part 515, Application interpreted construct: Constructive solid geometry;

– Part 517, Application interpreted construct: Mechanical design geometric presentation;

– Part 518, Application interpreted construct: Mechanical design shaded representation;

The structure of this International Standard is described in ISO 10303-1. The numbering of the p
the International Standard reflects its structure:

– Parts 11 to 13 specify the description methods,
xi

ISO/NWI 10303- © ISO

tion
– Parts 21 to 26 specify the implementation methods,

– Parts 31 to 35 specify the conformance testing methodology and framework,

– Parts 41 to 49 specify the integrated generic resources,

– Parts 101 to 106 specify the integrated application resources,

– Parts 201 to 232 specify the application protocols,

– Parts 301 to 332 specify the abstract test suites,

– Parts 501 to 518 specify the application interpreted constructs, and

Should further parts of ISO 10303 be published, they will follow the same numbering pattern.

Annexes A, B, C, D, and E forms an integral part of this part of ISO 10303. Annex B is for informa
only.
xii

© ISO ISO/NWI 10303-

nge of
t data
f this
g and

s of ISO
inter-
meth-

03 is a
Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and excha
product data. The objective is to provide a neutral mechanism capable of describing produc
throughout the life cycle of a product, independent from any particular system. The nature o
description makes it suitable not only for neutral file exchange, but also as a basis for implementin
sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The part
10303 fall into one of the following series: description methods, integrated resources, application
preted constructs, application protocols, application modules, abstract test suites, implementation
ods, and conformance testing. The series are described in ISO 10303-1. This part of ISO 103
member of the description methods series.

This part of ISO 10303 specifies the EXPRESS-X mapping language.
xiii

ISO/NWI 10303- © ISO
xiv

© ISO ISO/NWI 10303-

in the

ow an

l.

ion of

ations.
INTERNATIONAL STANDARD © ISO ISO/NWI 10303-1?

Industrial automation systems and integration —
Product data representation and exchange —
Part 1???:
Description methods: The EXPRESS-X language reference
manual

1. Scope

This part of ISO 10303 defines a language by which relationships of data defined by models
EXPRESS language can be specified. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that all
unambiguous specification of the relationship between models.

The following are within the scope of this part of ISO 10303:

– Mapping data defined by one EXPRESS model to data defined by another EXPRESS mode

– Mapping data defined by one version of an EXPRESS model to data defined by another vers
EXPRESS model, where the two schemas have different names.

– Specification of requirements for data translators for data sharing and data exchange applic

– Formal specification of alternate views of data defined by an EXPRESS model.

– Provisions for an alternate notation for application protocol mapping tables.

– Provisions for bi-directional mappings where mathematically possible.

– Concatenation of mappings sharing a common model.

– Specification of constraints evaluated against data produced by mapping.

The following are outside the scope of this part of ISO 10303:

– Mapping of data defined using means other than EXPRESS.

– Mapping of data defined using the second edition of EXPRESS.

– Identification of the version of an EXPRESS schema.
1

ISO/NWI 10303- © ISO

ns of
are

o inves-
ers of

and

and
– Graphical representation of constructs in the EXPRESS-X language.

2. Normative references

The following standards contain provisions that, through reference in this text, constitute provisio
this part of ISO 10303. At the time of publication, the editions indicated were valid. All standards
subject to revision, and parties to agreements based on this part of ISO 10303 are encouraged t
tigate the possibility of applying the most recent editions of the standards indicated below. Memb
IEC and ISO maintain registers of currently valid International Standards.

ISO 10303-1:1994,Industrial automation systems and integration — Product data representation
exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:1994,Industrial automation systems and integration — Product data representation
exchange — Part 11: Description methods: The EXPRESS language reference manual.

3. Definitions

3.1 Terms defined in ISO 10303-1

This part of ISO 10303 makes use of the following terms defined in ISO 10303-1.

– data;

– data specification language;

– exchange structure;

– implementation method;

– information;

– information model.

3.2 Terms defined in ISO 10303-11

This part of ISO 10303 makes use of the following terms defined in ISO 10303-11.

– complex entity data type;
2

© ISO ISO/NWI 10303-

cord-

ents.

f a
target

e of
n the
efined

types
– complex entity (data type) instance;

– constant;

– entity;

– entity data type;

– entity (data type) instance;

– instance;

– partial complex entity data type;

– partial complex entity value;

– population;

– simple entity (data type) instance;

– subtype/supertype graph;

– token;

– value.

3.3 Other definitions

For the purposes of this part of ISO 10303, the following definitions apply:

3.3.1 binding: an ordered tuple of values taken from source data entity extents or view extents ac
ing to the requirements of a view or map declaration.

3.3.2 binding extent: the set of bindings corresponding to source data entity extents and view ext

3.3.3 evaluation(of a view or map): the application of a binding to a view or map. Evaluation o
view may produce a view extent. Evaluation of a map may produce entity instances in the
data set.

3.3.4 inverse evaluation(of a view / map): the updating of source data values through the updat
(view instance / target entity instance) attribute values. Inverse evaluation shall maintai
relationship between (view instance / entity instance) attribute values and source data as d
in the (VIEW / MAP) declarations.

3.3.5 map: a declaration that defines a relationship between data of one (or more) source entity
and data of one (or more) target entity types.

3.3.6 view: an alternative organization of the information in an EXPRESS model.
3

ISO/NWI 10303- © ISO

view

lues

data.

elow.
ll as

e that
es

the

t it is

:1994

t it is
to 14.
tants.

that
3.3.7 view extent: an aggregation data type having as its domain a collection of values of a given
data type. An element of the collection may be identified by a binding.

3.3.8 view data type: a representation of a view. A view data type establishes a domain of va
defined by common attributes.

3.3.9 view instance: a named unit of data which represents an alternative organization of source
It is a member of the domain established by a view entity type.

4. Conformance requirements

4.1 Formal specifications written in EXPRESS-X

4.1.1 Lexical language

A formal specification written in EXPRESS-X shall be consistent with a given level as specified b
A formal specification is consistent with a given level when all checks identified for that level as we
all lower levels are verified for the specification.

Levels of checking

Level 1: Reference checking. This level consists of checking the formal specification to ensur
it is syntactically and referentially valid. A formal specification is syntactically valid if it match
the syntax generated by expanding the primary syntax rule (syntax) given in Annex A. A formal
specification is referentially valid if all references to EXPRESS-X items are consistent with
scope and visibility rules defined in clauses 10 and 11.

Level 2: Type checking. This level consists of checking the formal specification to ensure tha
consistent with the following:

– expressions shall comply with the rules specified in clause 12 and in ISO 10303-11
clause 12;

– assignments shall comply with the rules specified in ISO 10303-11:1994 clause 13.3.

Level 3: Value checking. This level consists of checking the formal specification to ensure tha
consistent with statements of the form, ‘A shall be greater than B’, as specified in clause 7
This is limited to those places where both A and B can be evaluated from literals and/or cons

Level 4: Complete checking. This level consists of checking the formal specification to ensure
it is consistent with all stated requirements as specified in this part of ISO 10303.
4

© ISO ISO/NWI 10303-

cation
n. An

efined
tion

menta-
on the

nform-

ny for-
h that
e data
side the

enta-
on the

nform-

sub-

ria:

el.

ia:

mation
4.2 Implementations of EXPRESS-X

4.2.1 EXPRESS-X language parser

An implementation of an EXPRESS-X language parser shall be able to parse any formal specifi
written in EXPRESS-X, consistent with the conformance class associated with that implementatio
EXPRESS-X language parser shall be said to conform to a particular checking level (as d
in 4.1.1) if it can apply all checks required by that level (and any level below it) to a formal specifica
written in EXPRESS-X.

The implementor of an EXPRESS-X language parser shall state any constraints that the imple
tion imposes on the number and length of identifiers, on the range of processed numbers, and
maximum precision of real numbers. Such constraints shall be documented for the purpose of co
ance testing.

4.2.2 EXPRESS-X mapping engine

An implementation of an EXPRESS-X mapping engine shall be able to evaluate and/or execute a
mal specification written in EXPRESS-X, consistent with the conformance class associated wit
implementation. The execution and/or evaluation of a mapping is relative to one or more sourc
sets; the specification of how these data sets are made available to the mapping engine is out
scope of this part of ISO 10303.

The implementor of an EXPRESS-X mapping engine shall state any constraints that the implem
tion imposes on the number and length of identifiers, on the range of processed numbers, and
maximum precision of real numbers. Such constraints shall be documented for the purpose of co
ance testing.

An implementation of an EXPRESS-X mapping engine may take many forms; the following
clauses identify representatively, not exhaustively, the support a mapping engine may provide.

4.2.2.1 Support of VIEW declarations

An implementation shall be said to support VIEW declarations if it meets all of the following crite

– The mapping engine accepts a single data set described by an EXPRESS information mod

– The source data instances may be accessed through the evaluation of VIEW declarations.

4.2.2.2 Support of MAP declarations

An implementation shall be said to support MAP declarations if it meets all of the following criter

– The mapping engine accepts at least a single data set described by an EXPRESS infor
model.
5

ISO/NWI 10303- © ISO

apped
ver pos-

join

elim-

athe-

ma(s).

view /

ema.

GRE-

rela-

wing

put data

poten-

l

– The mapping engine generates a single data set for a given EXPRESS information model.

– The source data instances may be accessed through the evaluation of MAP declarations.

4.2.2.3 Support of the propagation of updates

An implementation shall be said to support the propagation of updates if updates on viewed / m
data are reflected in source data by the inverse evaluation of the appropriate declarations whene
sible.

Propagation of updates is not possible in situations where any of the following hold:

– The view / target entity is derived from / mapped to two or more source entities by applying a
operation. (For example, the view / target entityperson_in_dept corresponds to the source
entities person and department where the join conditionperson.id = depart-
ment.person_id evaluates to true.)

– Duplicates (with respect to value equivalence of attributes) which exist in the source data are
inated in the view / target data.

– View / target attributes are derived from / mapped to source schema elements by applying m
matical expressions that are not mathematically invertible.

– The view / target schema defines additional subtypes which do not exist in the source sche

– Subtypes which are defined in the souce schema(s) are projected (i.e., not contained) in the
target schema.

– The sort order of source attributes of type AGGREGATE is eliminated in the view / target sch

– Duplicates (with respect to value equivalence) of elements of source attributes of type AG
GATE are eliminated in the view / target schema.

– A single source entity corresponds to a network of interconnected view / target entities (by

tionships or equivalence of attribute values1).

4.2.2.4 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the follo
criteria:

– The mapping engine accepts one or more source data sets, and produces one or more out
sets.

– The output data sets are derived from the input data sets by the execution and evaluation of
tially all of the VIEW and MAP declarations.

1. The latter kind of relationship is comparable to primary key - foreign key relationships in the relationa
data model.
6

© ISO ISO/NWI 10303-

the out-

ing

tion and

enti-

cribed
t view

ations

ations
to a

SS-X

o the
– Every instance in the source data sets is mapped as specified in the mapping schema into
put data sets.

4.2.2.5 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the follow
criteria:

– The mapping engine accepts one or more source data sets.

– Specified target data instances are derived on demand from the input data sets by the execu
evaluation of the appropriate VIEW or MAP declarations.

NOTE — This part of ISO 10303 does not define how appropriate VIEW / MAP declarations are id
fied.

4.2.2.6 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts des
in clause 9.6 of ISO 10303-11:1994 against entity instances in target populations and agains
instances in the view extents.

NOTE — The evaluation of constraints has no effect on the mapping execution model.

4.3 Conformance classes

An implementation shall be said to conform to conformance class 1 if it processes all the declar
that may appear in a SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class 2 if it processes all the declar
that may appear in a SCHEMA_MAP declaration that do not contain any external references
SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class 3 if it processes any EXPRE
declaration that conforms to this part of ISO 10303.

5. Fundamental principles

The reader of this document is assumed to be familiar with the following concepts, in addition t
concepts described in clause 5 of ISO 10303-11:1994.

EXPRESS-X provides for the specification of:
7

ISO/NWI 10303- © ISO

bed by

lat-

tuples)
pear in
f a
rimitive
f the

age to

ns are

of

#6 to
– alternative views of the data described by an information model described in EXPRESS;

– the transformation of data described by elements of one EXPRESS model into data descri
elements of another EXPRESS model.

A SCHEMA_VIEW declaration may provide declarations enabling the specification of the former.

A SCHEMA_MAPdeclaration may provide declarations enabling the specification of the former and
ter.

VIEWandMAPdeclarations may define aFROMclause. TheFROMclause, through its identification of
source extents, establishes a binding extent. The binding extent is a set of bindings (ordered
from the cartesian product of source extents. The elements of the tuples are ordered as they ap
the parameter_list of the FROMclause. The values of elements of the binding (elements o
source extent) may be entity instances references, view instance references or values of the p
EXPRESS types. The binding extent consists only of those tuples for which the application o
WHERE expression of the declaration (an extensional membership predicate) does not returnsFALSE.

Bindings and binding extents are notional constructs. There are no means within the langu
directly obtain or manipulate bindings or binding extents.

The VIEW declaration may define view attribute declarations. The expression of these declaratio
evaluated relative to a given binding.

EXAMPLE 1 — The extents ofpart andpart_usage_approval below are the sets of
entity instances (#1,#2,#3) and (#4,#5,#6) respectively. The binding extent
valve_approvers is the set of tuples (<#1,#4>,<#2,#6>). The parametersp and pua are
bound to #1 and #4 respectively to produce one view instance of the view extent and #2 and
produce another view instance of that extent.

ENTITY part;
 part_number : STRING;
 part_type : STRING;
END_ENTITY;

ENTITY part_usage_approval;
 approver : STRING;
 part_approved : STRING;
END_ENTITY

VIEW valve_approvers;
 FROM (p:part, pua:part_usage_approver)
 WHERE (p.part_number = pua.part_approved) AND
 (p.type = ‘valve’);

SELECT
 approver : STRING := pua.approver;
 part : STRING := p.part_number;
END_VIEW;
8

© ISO ISO/NWI 10303-

-

model
map is
s from

e body
A map

to data

trans-

on in

cular,

s are
are not
#1 = PART(‘p_1’,’valve’);
#2 = PART(‘p_2’,’valve’);
#3 = PART(‘p_3’,’steel door’);
#4 = PART_USAGE_APPROVAL(‘jones’,’p_1’);
#5 = PART_USAGE_APPROVAL(‘smith’,’p_3’);
#6 = PART_USAGE_APPROVAL(‘watkins’,’p_2’);

In view declarations that do not include anIDENTIFIED_BY clause, bindings serves to identify ele
ments of the extent defined by theVIEW declaration and source data set.

A schema map written in the EXPRESS-X language describes how elements of one EXPRESS
(the source model) may be transformed into elements of another (the target model). A schema
composed principally of map and type map declarations. A schema map may reference definition
an EXPRESS-X schema view.

The specification of a map is based upon an extent of bindings. For each binding in the extent, th
of the map is executed in order to create and populate one or more instances in the target model.
specification that meets certain criteria is said to be reversible; reversible maps allow a change
defined by the target model to be propagated back to the source model.

The specification of a type map defines how data described by EXPRESS defined types may be
formed between the source and target model.

EXPRESS function and procedure specifications may form part of an EXPRESS-X specificati
order to support the definition of views, maps, or type maps.

The EXPRESS-X language does not describe an implementation environment. In parti
EXPRESS-X does not specify:

– how references to names are resolved;

– how other schemas, schema views, or schema maps are known;

– how input and output data sets are specified;

– how mappings are executed for instances that do not conform to an EXPRESS schema.

6. Language specification syntax

The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

The full syntax for the EXPRESS-X language is given in Annex A. Portions of those syntax rule
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions
9

ISO/NWI 10303- © ISO

yntax
has a

tion
mean-

ft side
acter.
pper-

al is a
must be

used

hich are
always complete. It will sometimes be necessary to consult Annex A for the missing rules. The s
portions within this part of ISO 10303 are presented in a box. Each rule within the syntax box
unique number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).

NOTE — See annex B for a reference.

The notational conventions and WSN defined in itself are given below.

syntax= { production } .

production= identifier '=' expression '.' .

expression= term { '|' term } .

term= factor { factor } .

factor= identifier | literal | group | option | repetition .

identifier= character { character } .

literal= '''' character { character } '''' .

group= '(' expression ')' .

option= '[' expression ']' .

repetition= '{' expression '}' .

– The equal sign'=' indicates a production. The element on the left is defined to be the combina
of the elements on the right. Any spaces appearing between the elements of a production are
ingless unless they appear within a literal. A production is terminated by a period'.' .

– The use of an identifier within a factor denotes a nonterminal symbol that appears on the le
of another production. An identifier is composed of letters, digits, and the underscore char
The keywords of the language are represented by productions whose identifier is given in u
case characters only.

– The word literal is used to denote a terminal symbol that cannot be expanded further. A liter
sequence of characters enclosed in apostrophes. For an apostrophe to appear in a literal it
written twice, i.e.,'''' .

– The semantics of the enclosing braces are defined below:

• curly brackets'{ }' indicates zero or more repetitions;

• square brackets'[]' indicates optional parameters;

• parenthesis'()' indicates that the group of productions enclosed by parenthesis shall be
as a single production;

• vertical bar'|' indicates that exactly one of the terms in the expression shall be chosen.

The following notation is used to represent entire character sets and certain special characters w
difficult to display:
10

© ISO ISO/NWI 10303-

com-

lause 7

ctions,
ord in

ESS-X

g that
ER-

ds of
– \a represents any character from ISO/IEC 10646-1;

– \n represents a newline (system dependent) (see clause 7.1.5.2 of ISO 10303-11:1994).

7. Basic language elements

This clause specifies the basic elements from which an EXPRESS-X mapping specification is
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The basic language elements of EXPRESS-X are those of the EXPRESS language defined in C
of ISO 10303-11, with the exceptions noted below.

7.1 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, fun
and procedures. Any reserved word in EXPRESS (ISO 10303-11:1994) shall also be a reserved w
EXPRESS-X. The reserved words shall not be used as identifiers. The reserved words of EXPR
are described below.

In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas usin
identifier can be mapped by renaming the conflicting identifier using the AS keyword in the REF
ENCE clause.

7.1.1 Keywords

In addition to the keywords of EXPRESS defined in ISO 10303-11:1994, the following are keywor
EXPRESS-X.

Table 1 — Additional EXPRESS-X keywords

ALIAS

END_SCHEMA_MAP

EXTERNAL

MAP

SOURCE

EACH

END_SCHEMA_VIEW

IDENTIFIED_BY

PARTITION

TARGET

END_INLINE_FUNCTION

END_TYPE_MAP

IMPORT_MAPPING

SCHEMA_MAP

TYPE_MAP

END_MAP

END_VIEW

INLINE_FUNCTION

SCHEMA_VIEW

VIEW
11

ISO/NWI 10303- © ISO

tribute,

e 8 of

tance
fier by
ed by
ted by

e via

a (see
8. Data types

This clause defines the data types provided as part of the language. Every view attribute, map at
or type map has an associated data type.

The data types are the same as those for the EXPRESS language defined in claus
ISO 10303-11:1994, with the exceptions noted below.

8.1 Complex entity data type

Complex entity data types are established implicitly by entity declarations related in an inheri
hierarchy (see ISO 10303-11:1994, clause 9.2). An entity data type is assigned an entity identi
the user. An entity data type is referenced by this identifier. A complex entity data type is referenc
an expression that lists the partial complex entity data types that are combined to form it, separa
the keyword AND.

The partial complex entity data types may be listed in any order.

Any partial complex entity data types that are included in another partial complex entity data typ
inheritance are not listed.

Rules and restrictions:

a) Each entity_ref shall be a reference to an entity which is visible in the current scope.

b) The referenced complex entity data type shall describe a valid domain within some schem
ISO 10303-11:1994, annex B).

c) A given entity_ref shall occur at most once within a complex_entity_ref.

EXAMPLE 2 — Given the following entity declarations:

ENTITY super SUPERTYPE OF ONEOF(a,c);
END_ENTITY;

ENTITY a SUBTYPE OF (super);
END_ENTITY;

ENTITY b SUBTYPE OF (super);
END_ENTITY;

ENTITY c SUBTYPE OF (super);
END_ENTITY;

Syntax:

42 complex_entity_spec = entity_reference AND entity_reference { AND
entity_reference }.
12

© ISO ISO/NWI 10303-

an
ntifier.

nding

e. The
SS-X

y
ata
refer-

e. The
SS-X

pe.
The following are valid complex entity data types:

a AND b

b AND c

The following are not valid complex entity data types:

a AND b AND super

a AND c

b AND c AND c

8.2 View data type

View data types are established byVIEWdeclarations (see clause 9.4). A view data type is assigned
identifier in the defining schema map or schema view. A view data type is referenced by this ide

A value of a view data type is a view instance and may be produced by evaluating an explicit bi
expression.

NOTE — A single view_reference identifier designates both a view data type and an extent data typ
intended construct in any particular situation may be discerned through examination of the EXPRE
grammar.

8.3 Extent data type

Extent data types are established explicitly byVIEW declarations (see clause 9.3) and implicitly b
source EXPRESS schemaENTITY declarations (ISO 10303-11;1994, clause 8.3.1). An extent d
type is assigned an identifier in the defining schema map or schema view. A extent data type is
enced by this identifier.

NOTE — A single view_reference identifier designates both a view data type and an extent data typ
intended construct in any particular situation may be discerned through examination of the EXPRE
grammar.

Rules and restrictions:

a) extent_reference shall be a reference to an extent which is visible in the current sco

Syntax:

138 view_reference = view_ref | primary_extended ’.’ view_qualifier .

Syntax:

48 extent_reference = source_entity_reference | view_reference .
13

ISO/NWI 10303- © ISO

each

ration
be ref-

in

ons. A
EXAMPLE 3 — The following declaration defines a view data type and extent data type,
designated bycircle .

VIEW circle;
 FROM (e : ellipse);
 WHERE (e.major_axis = e.minor_axis);
END_VIEW;

9. Declarations

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X decla
creates a new EXPRESS or EXPRESS-X item and associates an identifier with it. The item may
erenced elsewhere by writing the name associated with it.

The principle capabilities of EXPRESS-X are found in the following declarations:

– View;

– Map;

– Schema_view;

– Schema_map;

– Type_map.

In addition, an EXPRESS-X specification may contain the following declarations defined
ISO 10303-11:1994:

– Constant;

– Function;

– Procedure;

– Rule.

Mapping declarations are always explicit.

9.1 Schema_view declaration

A schema_view declaration defines a common scope for a collection of related mapping declarati
schema_view may contain the following kinds of declarations:

– constant declaration (clause 9.5);
14

© ISO ISO/NWI 10303-

pe of

a
-

tions.

t-
n ISO
– function declaration (clause 9.6);

– procedure declaration (clause 9.7);

– rule declarations (clause 9.10);

– view declaration (clause 9.3).

The order in which declarations appear within a schema_view declaration is not significant.

Declarations in one schema_view or EXPRESS schema may be made visible within the sco
another schema_view via an interface specification as described in clause 11.

EXAMPLE 4 — ap203_arm names aschema_view that may contain declarations defining
view over the schemaconfig_control_design in terms of the domain expert’s understand
ing of the information requirements.

SCHEMA_VIEW ap203_arm;
REFERENCE FROM config_control_design;
VIEW part_version ...
(* other mapping declarations as appropriate *)
END_SCHEMA_VIEW;

9.2 Schema_map declaration

A schema_map declaration defines a common scope for a collection of related mapping declara

EXAMPLE 5 — iges2step names aschema_map that may contain declarations for transla
ing geometry defined using and EXPRESS model base upon IGES into a model based o
10303-203.

SCHEMA_MAP iges2step;
REFERENCE FROM iges_express_schema;
MAP iges_structure ...
(* other mapping declarations as appropriate *)
END_SCHEMA_MAP;

Syntax:

100 schema_view_decl = SCHEMA_VIEW schema_view_id { reference_clause } [
constant_decl] schema_view_body_element_list END_SCHEMA_VIEW ';' .

87 reference_clause = REFERENCE FROM foreign_ref ['(' resource_or_rename
{ ',' resource_or_rename } ')'] ';' .

98 schema_view_body_element = function_decl | procedure_decl | view_decl
| create_view_decl .
15

ISO/NWI 10303- © ISO
The order in which declarations appear within aschema_map declaration is not significant. In partic-
ular, the order of the declarations has no effect upon the resulting mapping.

Declarations in oneschema_map may be made visible within the scope of anotherschema_map via
an interface specification as described in clause 11.

A schema_map may contain the following kinds of declarations:

– constant declaration (clause 9.5);

– function declaration (clause 9.6);

– procedure declaration (clause 9.7);

– type_map declaration (clause 9.8);

– view declaration (clause 9.3);

– map declaration (clause 9.4);

– rule declaration (clause 9.10).

The body of aschema_map shall have the same form as the body of aschema in ISO 10303-
11;1994, with the following exceptions:

– Theschema_map shall include at least oneMAP declaration.

– Theschema_map shall include atarget_interface_spec declaration.

– Theschema_map shall include asource_interface_spec declaration.

Syntax:

92 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec
source_interface_spec { map_interface_spec } { external_functions_spec
} { type_mapping_stmt } [constant_decl] schema_map_body_element_list
END_SCHEMA_MAP ';' .

113 target_interface_spec = TARGET schema_ref_or_rename { ','
schema_ref_or_rename } ';' .

105 source_interface_spec = SOURCE schema_ref_or_rename { ','
schema_ref_or_rename } ';' .

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename {
',' schema_map_or_view_ref_or_rename } ’;’.

49 external_functions_spec = EXTERNAL function_head { function_head }
END_EXTERNAL ';' .

117 type_mapping_stmt = TYPE_MAP target_type_reference {
target_type_reference } FROM source_type_reference {
source_type_reference } ';' { type_map_stmt_body } END_TYPE_MAP ';' .

90 schema_map_body_element = function_decl | procedure_decl | view_decl |
create_view_decl | map_decl | create_map_decl .
16

© ISO ISO/NWI 10303-

ding

meters

omain
that
– Theschema_map shall not include theinterface_specification declaration (defined
in ISO 10303-11;1994).

– Theschema_map shall not include theentity declaration (defined in ISO 10303-11;1994).

– Theschema_map shall not include thetype declaration (defined in ISO 10303-11;1994).

EXAMPLE 6 — This example illustrates the use of required EXPRESS-X declarations.t1 , t2 ,
t3 , s1 ands2 designate EXPRESS schema.other_map designates an EXPRESS-X schema.

SCHEMA_MAP map_name;
 TARGET t1, t2, t2;
 SOURCE s1, s2;
IMPORT MAPPING other_map;
END_SCHEMA_MAP;

9.3 Common clauses of the VIEW and MAP declarations

TheVIEW and theMAP declarations have the following clauses in common.

9.3.1 The FROM clause

The FROMclause identifies source extents (view extents and entity extents) from which a bin
extent is computed.

Rules and restrictions:

a) parameter_id s shall be unique within the scope of theMAP or VIEW declaration.

9.3.2 The WHERE clause

TheWHEREclause defines an extensional membership predicate (an expression) in terms of para
bound by theFROMclause. TheWHEREclause, together with the source extents identified in theFROM
clause, defines the binding extent. A tuple is a member of the binding extent unless one or more d
rule expressions of theWHEREclause returns FALSE for the binding of parameters representing
tuple.

Syntax:

55 from_clause = FROM ('(' from_parameter_list ')' | from_parameter_list
) .

57 from_parameter_list = from_parameter { ',' from_parameter } .
56 from_paramete r = [parameter_id { parameter_id } ':'] extent_reference

.

17

ISO/NWI 10303- © ISO

e
xplicit

ro-

the

onding
alues /

inde-
guar-

n (and
the

ns of
The syntax of theWHERE clause is as defined in ISO 10303-11;1994, clause 9.2.2.2.

9.3.3 Identification of view and target instances

The IDENTIFIED_BY clause and the binding defined by theFROMclause provide mutually exclusive
constructs to identify view instances (in its usage in theVIEW) and target instances (in its usage in th
MAP). These constructs are used to uniquely identify view instances and target instances in e
binding calls (clause 12.1).

The IDENTIFIED_BY clause declares the structure of an internal ID. The internal ID is a key p
duced by the concatenation of values resulting from the evaluation of theexpression s of the
identified_by_clause . The internal ID is a notional construct. There are no means within
language to directly obtain or manipulate an internal ID.

Rules and restrictions:

a) expression shall not evaluate to a value of type AGGREGATE.

The internal ID provides the following functionality:

– View instances or generated target instances can be related by the internal ID to the corresp
source instances because the internal ID is built by an expression over source attributes v
OIDs.

– The mapping engine automatically avoids unintended duplicates in the view / target. That is,
pendent of the execution order of the mapping and independent of the starting point, it can be
anteed that the same view / target instance is not generated more than once.

– Support of uniqueness constraints for view / target instances based on source informatio
therefore implicitly also on view / target information because it is derived / mapped from
sources).

– The internal ID is used to specify relationship between view / target instances by the mea
explicit binding (clause 12.1).

Syntax:

58 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.
18

© ISO ISO/NWI 10303-

lent
es of
e
rget

M-

y not
xists

or tar-

nd to
es is

at

n

EXAMPLE 7 — In the following, the source data set may contain multiple value equiva
instances ofnumber whereas the target population shall contain no value equivalent instanc
unique_number . Were noIDENTIFIED_BY clause specified for this example, the OID of th
source entitynumber (the binding) would have served as the internal ID and thus the ta
instances ofnumber may not have been value unique.

source schema: target schema:
ENTITY number; ENTITY unique_number;
 its_value : INTEGER; its_value : INTEGER;
END_ENTITY; END_ENTITY;

MAP unique_number
FROM n : number
IDENTIFIED_BY n.its_value;
END_MAP;

NOTE — The declaration of a unique_number VIEW is similar to the MAP unique_number in EXA
PLE 7.

Although the internal ID uniquely identifies view instances and target instances, an internal ID ma
necessarily uniquely identify a binding in the binding extent. When a one-to-many relationship e
between internal IDs and bindings, the following procedure is used to produce the view instance
get instances corresponding to the unique internal ID:

If the IDENTIFIED_BY clause and sources extents are such that two or more bindings correspo
a single internal ID, then the values of attributes of the resulting view instance or entity instanc
computed as follows:

– If for each such binding, the evaluation of theview_attr_assgnmt_expr (or
map_attr_assgnmt_expr in the case of aMAP) of the attribute produces an equal value, th
value is assigned to the attribute.

– If for two or more bindings, the evaluation of theview_attr_assgnmt_expr (or
map_attr_assgnmt_expr in the case of aMAP) of the attribute produces unequal values, a
indeterminate value is assigned to the attribute.

EXAMPLE 8 — Assuming that one instance of the target entitydepartment corresponds to a
set of instance ofemployee where all of them have the same value for the attributedept .

source schema: target schema:
ENTITY employee; ENTITY department;
 name : STRING; employees : SET OF STRING;
 manager : STRING; manager : STRING;
 dept : STRING; name : STRING;
END_ENTITY; END_ENTITY;
19

ISO/NWI 10303- © ISO

s, each
er but

alues
oyee

xtent.

view

les
ation
via the

the
e given.
mapping:
MAP department
FROM e : employee
IDENTIFIED_BY e.dept;
SELECT
 name := e.dept;
 manager := e.manager;
 employees := e.name;
END_MAP;

Assuming that each department has exactly one manager and more than one employee
instance of the target entity department will have a value for the attributes name and manag
an indeterminate value for employees.

NOTE — It will be shown below how the inline view resp. the for expression can be used to assign v
to a view / target attribute of type AGGREGATE and therefore to fold all source instances of empl
which have the same value for dept into one target instance of department.

9.4 View declaration

A VIEWdeclaration creates a view data type and declares an identifier to refer to it. AVIEWdeclaration
defines one or more view expressions that may be evaluated for a given binding in the binding e

A VIEW declaration consists of one or more partitions. Each partition defines part of the entire
extent. Partitions may be named; the name is optional if there is only a single partition.

EXAMPLE 9 — The following view collects the information about persons serving in ro
within organizations. This information is collected from two instances of person_and_organiz
and cc_design_person_and_organization_assignment. The two instances must be related
assigned_person_and_organization attribute of
cc_design_person_and_organization_assignment. Three attribute reference expressions ar

VIEW arm_person_role_in_organization;
FROM (pao : person_and_organization,
 ccdpaoa : cc_design_person_and_organization_assignment)
WHERE ccdpaoa.assigned_person_and_organization :=: pao;
SELECT
 person : person := pao.the_person;
 org : organization := pao.the_organizaion;
 role : label := ccdpaoa.role.name;
END_VIEW;
20

© ISO ISO/NWI 10303-

in the

decl

in the

n of its
ute

d

artial
 type.

of
Rules and restrictions:

a) If in a view_decl a subtype_of_clause is specified, no from_clause shall be declared
view_decl_body s of any partition.

b) If no subtype_of_clause is specified, the from_clause in any view_decl_body of this view_
is mandatory.

c) Each attribute expression reference declared in the view declaration shall be unique with
declaration.

9.4.1 View attributes

An attribute of a view data type represents a property whose value is computed as the evaluatio
view_attr_assgnmt_expr , an expression, in order to create a view instance. Each view attrib
declaration identifies a distinct property.

The name of a view attribute (view_attribute_id) represents the role played by it associate
value in the context of the view in which it appears.

The expression represented by aview_attr_assgnmt_expr is evaluated in the context of a given
binding in the binding extent. The evaluation may produce a reference to source data, a full or p
view extent, or an aggregate of type SET with a base type that is an entity data type or view data

Rules and restrictions:

a) The expression (expression , view_cond_attr_expr , view_case_expr ,
inline_view_decl , view_call) shall be assignment compatible with the data type

Syntax:

130 view_decl = VIEW view_id ';' [subtype_of_clause] (view_partitions |
view_decl_body) END_VIEW ';' .

134 view_partition = PARTITION [partition_id ':'] view_decl_body .
131 view_decl_body = [from_clause] [identified_by_clause] [

where_clause] [view_project_clause] .

Syntax:

136 view_project_clause = SELECT (extent_reference |
view_attr_decl_stmt_list) .

120 view_attr_decl_stmt_list = view_attribute_decl { view_attribute_decl }
.

121 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.']
base_type ':=' view_attr_assgnmt_expr ';' .

119 view_attr_assgnmt_expr = expression | view_cond_attr_expr |
view_case_expr | inline_view_decl | view_call .
21

ISO/NWI 10303- © ISO

ith
ngine

and
the view attribute.

b) Every view attribute of a view instance shall have a value.

EXAMPLE 10 — circle names a view extent defined to contain all ellipse instances w
equal length major and minor axes. For a given binding in the binding extent, the mapping e
evaluates the expressionse.semi_axis_1 ande.position to obtain values of theradius
andposition view attributes, respectively.

VIEW circle;
FROM (e : ellipse) WHERE e.semi_axis_1 = e.semi_axis_2;
SELECT
 radius : positive_length_measure := e.semi_axis_1;
 position : axis2_placement := e.position;
END_VIEW;

9.4.2 View partitions

A view extent is the union of the extents defined by its partitions. If theVIEWdeclaration contains more
than one partition, the partitions shall be named. Apartition_id names a partition.

EXAMPLE 11 — In ISO 10303-201, the application objectorganization may be mapped to
either aperson , an organization , or both aperson and organization entity in the
AIM. This is specified in EXPRESS-X as follows:

VIEW arm_organization
PARTITION a_single_person :
 FROM (p : person)
 ...

PARTITION a_single_organization :
 FROM (o : organization)
 ...

PARTITION a_person_in_an_organization :
 FROM (po : person_and_organization)

END_VIEW;

Rules and restrictions:

a) All partitions of aVIEW declaration shall define the same attributes (including names
types)

Syntax:

134 view_partition = PARTITION [partition_id ':'] view_decl_body .
22

© ISO ISO/NWI 10303-

..

if it
rtype

the

n of
0303-

ivalent

P dec-
ntities.

of the
reated

. parti-
b) The attributes of aVIEW declaration shall appear in the same order in each of its partitions

9.4.3 Specifying subtype views

EXPRESS-X allows for the specification of views as subtypes of other views. A view is a subtype
contains aSUBTYPEdeclaration. The extent of a subtype view is a subset of the extent of its supe
as defined by the extensional membership predicate defined by theWHERE clause in the subtype.

A VIEW declaration containing aSUBTYPE declaration shall not contain aFROM declaration.

A subtypeVIEWmay inherit attributes from its supertype. Inheritance of attributes shall adhere to
rules and restrictions of attribute inheritance defined in ISO 10303-11;1994 clause 9.2.3.3.

A subtypeVIEWdeclaration may redefine attributes found in one of its supertypes. The redefinitio
attributes shall adhere to the rules and restrictions of attribute redistribution defined in ISO 1
11;1994 clause 9.2.3.4.

EXAMPLE 12 — The following view illustrates subtyping. The viewmale defines an additional
membership requirement (gender = ‘M’) for view instances of the subtype.

VIEW person;
FROM ...
END_VIEW;

VIEW male SUBTYPE OF person;
WHERE gender = 'M';
...
END_VIEW;

9.5 Map declaration

The MAP declaration supports the specification of correspondences between semantically equ
elements of two or more EXPRESS models possessing differing structure. EachMAPdeclaration spec-
ifies how base instances of one or more types are to be mapped to target instances. That is, a MA
laration supports, in a single declaration, the mapping from many target entities to many source e

A MAP declaration consists of a header and body of one or more map statements. The purpose
header is to define the conditions under which one or more new target instance(s) should be c
from one or more instances in a base model. Themap_decl_body defines how the values of the
attributes for a newly created instance are to be computed. The concept of alternative views, i.e
tions, is also available for maps.
23

ISO/NWI 10303- © ISO

ESS
.

e
ped in
he
ing is

et of
9.5.1 Header of the MAP declaration

The header identifies one or more entity types defined explicitly or implicitly in the target EXPR
schema. It is not required that those target entity types are related to each other by relationships

Rules and restrictions:

a) For each entity type appearing in thetarget_entity_ref_list none of its supertypes
shall appear in the list.

A target entity type shall not be mapped in more than oneMAPdeclaration in which the headers of thos
declarations consist only of a single target entity type. However, one target entity can be map
more than oneMAPdeclarations (say n), if n-1MAPdeclarations are group mappings. To support t
call of a target entity mapping inside a group mapping, the MAP declaration of the group mapp
given a name (group_name).

NOTE — A single target entity type may be mapped in various ways by means of partitions.

EXAMPLE 13 — In the example below, a pump in the source data model is mapped to a s
target entities.

MAP xx AS group_for_pump
FROM p : pump
 -- attribute mappings of the target entities
END_MAP;

The initial values of the attributes of the newly created instance(s) are indeterminate.

Syntax:

74 map_decl = MAP map_decl_header ((map_decl_body { map_partitions }) |
map_decl_body) END_MAP ';' .

78 map_partition = PARTITION [partition_id ':'] map_decl_body .
75 map_decl_body = ((from_clause [identified_by_clause]) |

subtype_of_clause) [where_clause] { entity_instantiation_loop } [
map_project_clause] .

Syntax:

76 map_decl_header = target_entity_ref_list [NAMED network_id] .
111 target_entity_ref_list_el = [target_entity_alias_id ':' [LIST

bound_spec OF]] target_entity_reference .
112 target_entity_reference = entity_reference | complex_entity_spec |

target_schema_ref '.' '(' complex_entity_spec ')' .
24

© ISO ISO/NWI 10303-

r if a
ically
T key-
ue to
which
ssign-

nt sec-

nt

tic

s

i-
9.5.2 The SELECT clause

TheSELECTclause is needed if source attributes have to be projected in the view / target entity o
specific entity of multiple FROM clause entities have to be mapped to the view / target entity ident
(same attributes with same values). In the latter case, just this entity is specified after the SELEC
word. If view / target attributes are not identical to the source schema due to their structure or d
their values, then the SELECT clause contains the attribute assignment statements to specify
view / target attributes have to be built by which expression over the source data. Those attribute a
ment statements are different for the VIEW and the MAP declaration as shown in the subseque
tions.

TheMAP declarationSELECT clause identifies data that shall appear in the target data set.

The syntactic formSELECT extent_reference declares that an entity instance value equivale
to that bound toextent_reference shall appear in the target data set.

The syntactic form SELECT map_attribute_decl_block assigns values
(map_attr_assgnmt_expr) to the target entity attributes (l-values) identified by the syntac
form [entity_reference] ‘.’ attribute_ref .

9.5.3 Partitions within a MAP declaration

The partition concept is the same as described within theVIEW declaration (see clause 9.3.1). It i
extended so that partitions can be defined for a list of target entities.

If multiple target entities are listed in the header of theMAPdeclaration, different subset of those ent
ties can be used for the partitions.

Rules and restrictions:

a) If the MAP declaration contains more than one partition, the partitions shall be named.

Syntax:

80 map_project_clause = SELECT (extent_reference |
map_attribute_decl_block).

68 map_attribute_decl_block = map_attr_decl_stmt_list .
67 map_attr_decl_stmt_list = map_attribute_declaration {

map_attribute_declaration } .
69 map_attribute_declaration = [entity_reference '.'] attribute_ref

':=' map_attr_assgnmt_expr ';' .

Syntax:

78 map_partition = PARTITION [partition_id ':'] map_decl_body .
25

ISO/NWI 10303- © ISO

super-
nd all
speci-

in the
an be
b) All partitions must define the same attributes (attribute_ref) and types.

9.5.4 Inheritance

If an inheritance hierarchy is defined in the target EXPRESS schema, the MAP declaration of the
type must specify the mapping for all instances of this supertype, i.e. all direct instances a
instances of all its subtypes. If the mapping for the subtypes is not the same, partitions must be
fied.

EXAMPLE 14 — Inheritance for MAP declaration.

target schema: source schema:
ENTITY person; ENTITY male;
 name : STRING; name : STRING;
END_ENTITY; END_ENTITY;

ENTITY male; ENTITY female;
SUBTYPE_OF person; name : STRING;
END_ENTITY; END_ENTITY;

ENTITY female;
SUBTYPE OF person;
END_ENTITY;

mapping specification:
MAP person
PARTITION female_person :
 FROM female
PARTITION male_person :
 FROM male
END_MAP;

MAP male
SUBTYPE OF person
PARTITION male_person
END_MAP;

MAP female;
SUBTYPE OF person
PARTITION female_person
END_MAP;

Alternatively, the clauses inside the partition can be specified in the subtypes and only referenced
supertype. Once they are defined, the constraints which are specified for an specific view c
extended in subviews.

The mapping of supertypes or subtypes cannot be specified in a network mapping.
26

© ISO ISO/NWI 10303-

in the

n the

r type
9.6 Create declaration

TheCREATE declaration defines the form of an entity that shall be created in the target data set.

9.7 Constant declaration

Constants may be defined for use within the WHERE clause of a view or map declaration, or with
body of a map declaration or algorithm.

Constant declarations are as defined in ISO 10303-11:1994 clause 9.4.

9.8 Function declaration

Functions may be defined for use within the WHERE clause of a view or map declaration, or withi
body of a map declaration.

Function declarations are as defined in ISO 10303-11:1994 clause 9.5.1.

9.9 Procedure declaration

Procedures may be defined for use within the body of a map declaration.

Procedure declarations are as defined in ISO 10303-11:1994 clause 9.5.2.

9.10 Rule declaration

Rules may be defined for use within the SCHEMA_VIEW and SCHEMA_MAP clause.

Rule declarations are as defined in ISO 10303-11:1994 clause 9.6.

9.11 Type map declaration

A type map declaration specifies how a value of a defined type is mapped to a value of anothe
within the scope of a schema map.

Syntax:

43 create_map_decl = CREATE instance_id INSTANCE_OF
target_entity_reference ';' map_attr_decl_stmt_list END_CREATE ';' .
27

ISO/NWI 10303- © ISO

types

entity

item in
licitly

m may
identi-
ems

limits
hich
which

forced
EXAMPLE 15 — The following specifies the mapping between the typesdollar anddmark .

TYPE_MAP dmark FROM dollar;
 dmark := 1.5 * dollar;
 dollar := dmark / 1.5;
END_TYPE_MAP;

The mapping is applied whenever the source attribute type is type compatible with one of the first
and the target attribute type is type compatible with one of the second types.

Rules and restrictions:

a) Body is not needed if just renaming.

b) No more than two expressions; if second is omitted then reverse mapping is implicit.

c) The two expressions shall be inverses of each other.

d) No entity instances shall be mapped by the TYPE_MAP. The base type shall not be an
type.

10. Scope and visibility

An EXPRESS-X declaration creates an identifier that can be used to reference the declared
other parts of the schema_view (or in other schema_views). Some EXPRESS-X constructs imp
declare items, attaching identifiers to them. In those areas where an identifier for a declared ite
be referenced, the declared item is said to be visible. An item may only be referenced where its
fier is visible. For the rules of visibility, see clause 10.2 For further information on referring to it
using their identifiers, see clause 12.

Certain EXPRESS-X items define a region (block) of text called the scope of the item. This scope
the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item w
establishes a scope may be included within the scope of another item. There are constraints on
items may appear within a particular EXPRESS-X item’s scope. The constraints are usually en
by the syntax of EXPRESS-X.

Syntax:

117 type_mapping_stmt = TYPE_MAP target_type_reference {
target_type_reference } FROM source_type_reference {
source_type_reference } ';' { type_map_stmt_body } END_TYPE_MAP ';' .

116 type_map_stmt_body = [schema_ref '.'] base_type ':='
type_assgnmt_expr ';'.
28

© ISO ISO/NWI 10303-

scope
cific

o the

word
ara-

f a
For each of the items specified in table 2 below the following subclauses specify the limits of the
defined, if any, and the visibility of the declared identifier both in general terms and with spe
details.

10.1 Scope rules

The general scope rules are as defined in ISO 10303-11:1994.

10.2 Visibility rules

The general visibility rules are as defined in ISO 10303-11:1994.

10.3 Explicit item rules

The following clauses provide more detail on how the general scoping and visibility rules apply t
various EXPRESS-X items.

10.3.1 Schema_view

Visibility: A schema_view identifier is visible to all other schema_views.

Scope: A schema_view declaration defines a new scope. This scope extends from the key
SCHEMA_VIEW to the keyword END_SCHEMA_VIEW that terminates that schema_view decl
tion.

Declarations: The following EXPRESS-X items may declare identifiers within the scope o
schema_view declaration:

– constant;

Table 2 — Scope and identifier defining items

Item Scope Identifier

view attribute •

view • •

partition • •

schema_view • •
29

ISO/NWI 10303- © ISO

w in
enti-

o the

iew

iew, or
fication
– function;

– map;

– procedure;

– rule;

– type_map;

– view.

10.3.2 View

Visibility: A view identifier is visible in the scope of the function, procedure, rule, or schema_vie
which it is declared. A view identifier remains visible within inner scopes which redeclare that id
fier.

Scope:A view declaration defines a new scope. This scope extends from the keyword VIEW t
keyword END_VIEW which terminates that entity declaration.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a v
declaration:

– view expression;

– partition label.

10.3.3 View partition label

Visibility: A partition label is visible in the scope of the view in which it is declared.

10.3.4 View expression

Visibility: A view expression identifier is visible in the scope of the view in which it is declared.

11. Interface specification

This clause specifies the constructs that enable items declared in one schema, schema_v
schema_map to be visible in another schema_view or schema_map. The REFERENCE speci
allows enables item visibility.
30

© ISO ISO/NWI 10303-

w, or

ew or
owing
e use

_view,

es of
items
urrent
A foreign declaration is any declaration which appears in a foreign schema, schema_vie
schema_map (which is not the current schema_view or schema_map).

A foreign EXPRESS or EXPRESS-X item may be given a new name in the current schema_vi
schema_map. The item shall be referred to in the current schema by the new name if given foll
the AS keyword. This can be used in order to rename EXPRESS items that would otherwis
EXPRESS-X reserved words as their identifier.

11.1 Reference interface specification

A REFERENCE specification enables the following items, declared in a foreign schema, schema
or schema_map, to be visible in the current schema_view or schema_map:

– View;

– Map;

– Type_map;

– Constant;

– Entity;

– Function;

– Procedure;

– Type.

The REFERENCE specification gives the name of the foreign schema, and optionally the nam
EXPRESS or EXPRESS-X items declared therein. If there are no names specified, all the
declared in the foreign schema, schema_view, or schema_map are visible within the c
schema_view or schema_map.

Syntax:

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename {
',' schema_map_or_view_ref_or_rename } ’;’.

94 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename |
schema_view_ref_or_rename .

95 schema_map_ref_or_rename = [schema_map_alias_id ':'] schema_map_ref
.

102 schema_view_ref_or_rename = [schema_view_alias_id ':']
schema_view_ref .
31

ISO/NWI 10303- © ISO

in the
Rules and restrictions:

11.2 Implicit interfaces

11.3 SCHEMA_MAP interfaces

A schema_map interface specification allows items defined in foreign schema to be visible with
schema map. It also define the source and target schemas.

11.3.1 Source schema interface

The source schema interface specifies the name of the source schema.

11.3.2 Target schema interface

The target schema interface specifies the name of the target schema.

Syntax:

87 reference_clause = REFERENCE FROM foreign_ref ['(' resource_or_rename
{ ',' resource_or_rename } ')'] ';' .

53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .

Syntax:

92 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec
source_interface_spec { map_interface_spec } { external_functions_spec
} { type_mapping_stmt } [constant_decl] schema_map_body_element_list
END_SCHEMA_MAP ';' .

Syntax:

105 source_interface_spec = SOURCE schema_ref_or_rename { ','
schema_ref_or_rename } ';' .

Syntax:

113 target_interface_spec = TARGET schema_ref_or_rename { ','
schema_ref_or_rename } ';' .
32

© ISO ISO/NWI 10303-

S but

ced

oduce a
xpres-
d with

11:1994

xist in

rget
links
ces are

xpres-
11.3.3 Map interface

The map interface specifies how one SCHEMA_MAP may reference another.

11.3.4 External functions

The external functions interface specifies the interface to a function that is not defined in EXPRES
is defined externally and will be called as part of the mapping.

EXAMPLE 16 — A mapping may call an external function to convert geometry from advan
BREP into a faceted representation.

12. Expressions

Expressions are combinations of operators, operands, and function calls that are evaluated to pr
value. Anything that is an expression as defined in ISO 10303-11:1994 clause 12 is also a valid e
sion in EXPRESS-X. In addition, the following subclauses describe how expressions may be use
bindings and extents.

Precedence of operators and the order of evaluation of expressions are as defined in ISO 10303-
clause 12.

Entity constructors create instances that are local only to the function or procedure and do not e
either the target or the source.

12.1 Explicit binding

The main intention behind the explicit binding is to specify relationships between view / ta
instances within the mapping specification. That is, this concept supports the generation of
between view / target instances based on the assumption that the corresponding source instan
also related (via some path expressions or equivalence of attribute values). The explicit binding e

Syntax:

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename {
',' schema_map_or_view_ref_or_rename } ’;’.

Syntax:

49 external_functions_spec = EXTERNAL function_head { function_head }
END_EXTERNAL ';' .
33

ISO/NWI 10303- © ISO

ionship
target
d. That
has to

elated.

arget

tances
alue is
the

nce
sion is specified for the attribute assignment statement of the attribute which represents the relat
in the view / target entity. The generation of such a relationships requires the name of the view /
entity which is referenced and some expression to select the specific instance(s) to be reference
is, it has to be specified on the schema level which views / target entities have to be related and it
be specified also on the instance level which instances of those views / target entities have to be r

This relationship is specified in a function-like style where the name of the referenced view / t
entity is the function name (the so-called explicit-binding operator’s name).

The so-called expression of the explicit-binding operator is then used to select the specific ins
which have to be referenced. For this purpose, the expression is evaluated and the resulting v
them compared with the value of the internal ID(s) of the referenced entity (specified by
IDENTIFIED_BY clause). An example is given below.

EXAMPLE 17 — Explicit binding concept.

source schema:
ENTITY approval;
 id : STRING;
 creator : STRING;
END_ENTITY;

source instance set:
#1 = approval(’a_1’,’miller’);
#2 = approval(’a_2’,’jones’);
#3 = approval(’a_3’,’miller’);

target schema:
ENTITY person;
 id : STRING;
END_ENTITY;

ENTITY design_order;
 id : STRING;
 approved_by : person;
END_ENTITY;

In this mapping example, it is assumed thatdesign_order.id corresponds to
approval.id , person.id corresponds toapproval.creator , and design_order
referencesperson via the attributeapproved_by wheredesign_order andperson cor-
respond to the sameapproval . Furthermore, it is assumed that if more than one source insta
of approval.creator exist with the same, only one target instance ofperson has to be gen-
erated. This is achieved by the following VIEW declaration.
34

© ISO ISO/NWI 10303-

s

MAP person
FROM a : approval
IDENTIFIED_BY a.creator
SELECT
 id := a.creator;
 of_design_order := design_order(a);
END_MAP;

The IDENTIFIED_BY clause ensures that target instances ofperson are unique w.r.t. the source
attributeapproval.creator . That is, from source instances ofapproval having the same
value ofcreator only one target instance ofperson is generated. The target instanes ofper-
son are internally identified by the attribute valueapproval.creator of the corresponding
source instances.

MAP design_order
FROM a : approval
IDENTIFIED_BY OID(a) -- optional because default
SELECT
 id := a.id;
 approved_by := person(a.creator); -- explicit binding
END_MAP;

The name of the explicit-binding operator states that target instances ofdesign_order have to
be linked toperson via the attributeapproved_by . So far, it is not clear which target instance
of design_order have to be linked to which instances ofperson . This is done by the expres-
sion of the explicit-binding operator. The value ofapproval.creator is compared with the
internal IDs of the target instances ofperson . For example, the target instance#3 of
design_order has to be linked to the target instance#1 of person , because this
design_order is mapped from the source instance ofapproval having the value
’miller’ for approval.creator and this is the internal ID of target instance#1 .

Generated target instance set:
#1 = person(’miller’); -- internal ID ’miller’, mapped from #1,#3
#2 = person(’jones’); -- internal ID ’jones’, mapped from #2
#3 = design_order(’a_1’,#1); -- internal ID #1, mapped from #1
#4 = design_order(’a_3’,#2); -- internal ID #2, mapped from #2
#5 = design_order(’a_3’,#1); -- internal ID #3, mapped from #3

NOTE — The same concept is supported by the MAP declaration.

The explicit binding has to be specified using the following syntax.

Syntax:

70 map_call = entity_reference ['@' network_or_partition_qualification]
'(' expression { ',' expression } ')' .

82 network_or_partition_qualification = network_ref | [network_ref '.']
partition_ref .
35

ISO/NWI 10303- © ISO

hich
plicit

f the

s: :

ate.
es that

d by
ond
An explicit binding is used to specify a particular member of an extent. by providing instances w
are bound to the variables in the FROM clause, using a function-like syntax. The result of an ex
binding is a binding data type.

If an IDENTIFIED_BY clause is present in the definition of the extent, then the arguments o
explicit binding shall match that clause.

EXAMPLE 18 — Explicit bindings are useful for describing a relationship between two view

VIEW my_line;
FROM (l : line);
SELECT
 point : my_point := my_point(l.pnt);
 ...

END_VIEW;
VIEW my_point;
FROM (cp : cartesian_point)
 ...

12.2 Partial explicit binding

A partial explicit binding is an explicit binding in which one or more of the parameters is indetermin
The result of a partial explicit binding is the subset of the extent that matches the parameter valu
are provided.

EXAMPLE 19 — In the following, the various versions associated with a part are collecte
using a partial explicit binding. The result will be the subset of the extent for which the sec
component of the binding is equal to the specified product instance.

VIEW part;
FROM (p : product)
SELECT
 versions : SET OF version_and_its_product
 := version_and_its_product(?, p);
END_VIEW;

VIEW version_and_its_product;
FROM (pdf : product_definition_formation, p : product)
WHERE p :=: pdf.of_product;
SELECT
 the_version : product_definition_formation := pdf;
END_VIEW;
36

© ISO ISO/NWI 10303-

ave
bind-

line

, and in

in the

cess a
n mech-
ulated.

ESS
ept. In

of the
rmined

ntity)
12.3 Inline views

An inline view is the definition and evaluation of a view simultaneously. Inline views do not h
names, and may not be bound to explicitly. The result of an inline view is an extent (i.e., a set of
ings).

EXAMPLE 20 — In the following example the versions of a part are collected by using an in
view.

VIEW part
FROM (p : part)
SELECT
 versions : SET OF product_defintion_formation
 := VIEW FROM (pdf : product_definition_formation)
 WHERE pdf.of_product :=: p;
END_VIEW;

An inline view can always be replaced with an explicit or partial binding to a named view.

12.4 Operations on extents

An extent is a set of bindings; as such, it may be used in expressions where a set is appropriate
particular an extent may be iterated over to visit each binding.

12.5 View expression evaluation

Given a binding, a view attribute expression may be evaluated. The result will be an instance
underlying data set, a binding, or an extent.

12.6 FOR expression

The FOR expression is introduced for attribute assignment statements of MAP declarations to pro
set of elements and to assign a set as a result to the target attribute. For this purpose, an iteratio
anism is used where all elements of the set can be processed step by step, selected, and manip

The iteration of the FOR expression is controlled either by the repeat control known from EXPR
(cf., ???). Alternatively, a more declarative approach can be specified using the FOR EACH conc
the latter case, the following clauses are available.

– The EACH clause defines the (name of the) iterator variable. That is, in each processing step
loop of the FOR expression, an element of the set is assigned to this iterator. The set is dete
by the IN- (and the FROM-) clause.

– The IN clause specifies the set over which it has to be iterated over. This is either an (e
37

ISO/NWI 10303- © ISO

t one
ively,
OM

. In
is not
se of

e MAP

e of the

during
to the
extend. In this case the FROM clause is optional. That is, if it shall be iterated over exac
(entity) extent without further restrictions the FROM clause need not to be specified. Alternat
if it shall be iterated over an extent which is built upon many joined source extents, the FR
clause (and the WHERE clause) are needed.

In addition to the entity extent, it can also be iterated over an attribute of type AGGREGATE
this case, the FROM clause is optional: if the source entity of this attribute to be iterated over
specified in the FROM clause of the MAP declaration, it must be specified in the FROM clau
the FOR expression.

– The FROM clause of the FOR expression has the same semantics as the FROM clause of th
declaration (cf., ???).

– The WHERE clause of the FOR expression has the same semantics as the WHERE claus
MAP declaration (cf., ???).

– The RETURN clause specifies an expression which has to be processed for each element
the iteration. All processed elements together build the result aggregate which is returned
target attribute.

EXAMPLE 21 — FOR expression.

Source schema:
ENTITY product_definition;
 product_name : STRING;
 description : STRING;
END_ENTITY;

ENTITY product_definition_name;
 name : STRING;
 of_product_definition : product_definition;
END_ENTITY;

Target schema:
ENTITY component;
 names : SET [0:?] OF STRING;
 product_name : STRING;
 description : STRING;
END_ENTITY;

In this example, the target entitycomponent maps to the source entity
product_definition and all instances ofproduct_definitio_name which reference
one instance ofproduct_definition are grouped into the target attributecompo-
nent.names . This is specified as follows.
38

© ISO ISO/NWI 10303-

ded by
is,
e

lled

the

E OF
Mapping definition:
MAP component
FROM pd : product_definition
SELECT
 description := pd.description;
 product_name := pd.product_name;
 names := FOR EACH pdn_instance
 IN pdn
 FROM pdn : product_definition_name
 WHERE pdn.of_product_definition :=: pd
 RETURN pdn_instance.name
END_MAP;

This example also shows that the scope of the FROM clause of the MAP declaration can be exten
the FROM clause of an FOR expression within this MAP declaration. That
product_definition_name is not within the scope of the root entity of the FROM clause of th
MAP declarationproduct_definition . In this case, the FOR expression specifies the so-ca
outer join operation. That is, for each instance ofproduct_definition a target instance ofcom-
ponent is built independent of the existence of instances ofproduct_definition_name which
references thisproduct_definition . If such instances ofproduct_definition_name do
not exist, the value ofcomponent.names is the empty set. Otherwise, those instances (resp.
valueproduct_definition_name.name) are assigned to the attributecomponent.names .

The RETURN clause can be nested in order to map attributes which are of type AGGREGAT
AGGREGATE. This is shown in the following example.

EXAMPLE 22 — Nested FOR expression. The example 21 is extended as follows.

Source schema:
ENTITY product_definition;
 (* as defined in Ex. 21 *)
END_ENTITY;

ENTITY product_definition_name;
 (* as defined in Ex. 21 *)
END_ENTITY;

ENTITY product_definition_value;
 of_pdn : product_definition_name;
 value : STRING;
END_ENTITY;

Target schema:
ENTITY component;
 values : SET [0:?] OF SET [0:?] OF STRING;
 product_name : STRING;
 description : STRING;
END_ENTITY;
39

ISO/NWI 10303- © ISO

the

riables
les are

d to
In addition to example 21, all instances ofproduct_definition_value which reference
one instance ofproduct_definition_name are grouped together and are assigned to
inner aggregate ofcomponent.values . This is specified as follows.

Mapping definition:
MAP component
FROM pd : product_definition
SELECT
 description := pd.description;
 product_name := pd.product_name;
 names := FOR EACH pdn_instance
 IN pdn
 FROM pdn : product_definition_name
 WHERE pdn.of_product_definition :=: pd
 RETURN FOR EACH pdv_instance
 IN pdv
 FROM pdv : product_definition_value
 WHERE pdv.of_pdn :=: pdn_instance
 RETURN pdv_instance.value;
END_MAP;

The FOR expression also supports the so-called parallel iteration. That is, two or more iterator va
are assigned to elements of sets. During each step of the iteration loop, all the iterator variab
assigned to the next element of the corresponding set. This is shown in the following example.

EXAMPLE 23 — Parallel iteration with the FOR expression.

Source schema:
ENTITY persons;
 firstname : SET [0:?] OF STRING;
 lastname : SET [0:?] OF STRING;
END_ENTITY;

Target schema:
ENTITY set_of_persons;
 name : SET [0:?] OF STRING;
END_ENTITY;

It is assumed thatpersons.firstname[i] corresponds topersons.lastname[i] and
that those two values have to be concatenated and have to be assigne
set_of_persons.name[i] .

Mapping specification:
MAP set_of_persons
FROM p : persons
SELECT
 name := FOR EACH firstname_value IN p.firstname AND
 EACH lastname_value IN p.lastname
 RETURN firstname_value + lastname_value;
END_MAP;
40

© ISO ISO/NWI 10303-

a sub-
select
omit-

sed in

target
ssions
This example also shows that the FROM clause of the FOR expression is optional when it is
set of the FROM clause of the MAP declaration. In this example, no predicates are needed to
specific elements of the extent which is given by the IN clause. Thus, the WHERE clause is
ted.

Rules and restrictions:

a) The target attribute of the attribute assignment statement where the FOR expression is u
must be of type AGGREGATE.

12.7 Conditional expression

This concept is introduced for MAP declarations so that a specified expression is assigned to a
attribute under some condition (or, else another expression is assigned). The conditional expre
can be nested.

12.8 CASE expression

The CASE expression is similar to the CASE statement of EXPRESS.

Syntax:

50 for_expr = foreach_expr | forloop_expr .
51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND

variable_id IN foreach_in_clause_arg } [from_clause] [where_clause]
RETURN map_attr_assgnmt_expr ';' .

52 foreach_in_clause_arg = attribute_reference | view_attribute_reference
| extent_reference .

54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .

Syntax:

73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr
[ELSE map_attr_assgnmt_expr] END_IF ';' .
41

ISO/NWI 10303- © ISO

tement
from
state-

e, for
se one
lause

tribute-
re built
gnment
ns.
EXAMPLE 24 — CASE expression.

MAP my_approval
FROM a : approval
SELECT
 status := CASE a.status OF
 ’approved’ : 1;
 ’not approved’ : -1;
 ’indetermined’ : 0;
 OTHERWISE : 2;
 END_CASE;
END_MAP;

13. Executable statements

EXPRESS-X has sixteen types of statements for use inside MAP declarations. Many of these sta
types are taken directly from EXPRESS. Those that are either not in EXPRESS or are modified
their definition in EXPRESS include: the assignment statement, the FROM statement, the WHEN
ment, the initialize statement, the DELETE statement, and the instantiation statement.

13.1 FOR clause

The FOR clause is used to control the instantiation of target instances. Without the FOR claus
each qualified source instance or set of source instances given by the FROM and WHERE clau
target instance of each entity listed in the mapping header (target_entity_ref_list). The FOR c
allows to instantiate more than one target instance.

The FOR clause specifies a loop-control statement before the SELECT clause, i.e., before the at
assignment statements. The loop-control specifies the exact number of target instances that a
from each qualified source instance resp. set of qualified source instances. The attribute-assi
statements defines the mapping of all attributes of one or many target entities to some expressio

Syntax:

40 case_expr = CASE selector OF { case_expr_action } [OTHERWISE ':'
expression] END_CASE ';' .

41 case_expr_action = case_label { ',' case_label } ':' expression .
71 map_case_expr = CASE selector OF { map_case_expr_action } [OTHERWISE

':' map_attr_assgnmt_expr] END_CASE ';' .
72 map_case_expr_action = case_label { ',' case_label } ':'

map_attr_assgnmt_expr .
42

© ISO ISO/NWI 10303-

of

e.

aggre-

efines
of the
r vari-
ch ele-
nt value

r in
et data
of the
d

Rules and restrictions:

a) variable_id after the keyword EACH is of the same type as the elements
source_attribute_reference.

b) variable_id after the keyword INDEXING is of type NUMBER with values greater than on

The loop control statement defines either an iterator over elements of a source attribute of type
gate or it defines an iterator in a very similar way to the EXPRESS repeat loop.

In the first case, a so-called unnest operation will be applied. That is, the loop-control statement d
an iteration over a source attribute of type aggregate. In each iteration step, the next element
source attribute is assigned to a variable and optionally the index position is assigned to a iterato
able. The value of this element can thus be used inside the FOR statement. For example, for ea
ment of the source attribute of type aggregate a target instance can be generated and the eleme
can be assigned to a corresponding target attribute of type .

EXAMPLE 25 — In the following example, all item versions of one item are grouped togethe
the source data model. In contrast, each item version is a stand-alone instance in the targ
model. This example shows that the FOR loop specifies an iteration over the elements
source attributeitem_with_versions.id_of_versions . For each source instance an
for each element in that attribute a target instance is created. The target attributeitem_id is
mapped in the same way for all the target instances which ofitem_version which correspond
to the same underlyingitem_with_versions . The target attributeversion_id is assigned
to the value of the iterator variableversion_iterator .

ENTITY item_version; --target data model
 item_id : STRING;
 version_id : STRING;
END_ENTITY;

ENTITY item_with_versions; -- source data model
 id : STRING;
 id_of_versions : LIST OF STRING;
END_ENTITY;

Syntax:

45 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .
65 instantiation_loop_control = instantiation_foreach_control |

repeat_control .
64 instantiation_foreach_control = EACH variable_id IN

source_attribute_reference [WITH_INDEX variable_id] { AND
variable_id IN source_attribute_reference [WITH_INDEX variable_id] }
.

43

ISO/NWI 10303- © ISO

itera-

r in
et data
of the
d

MAP iv : LIST [0:?] OF item_version
FROM iwv : item_with_versions;
FOR EACH version_iterator OF iwv.id_of_versions INDEXING i
SELECT
 iv[i].item_id := iwv.id;
 iv[i].version_id := version_iterator;
END_MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

 #1 = item_with_versions(1,(10,11,12));

Target instance set:

 #1 = item_version(1,10);
 #2 = item_version(1,11);
 #3 = item_version(1,12);

Alternatively, the repeat-loop control statement known from EXPRESS can be used to specify the
tion steps.

EXAMPLE 26 — In the following example, all item versions of one item are grouped togethe
the source data model. In contrast, each item version is a stand-alone instance in the targ
model. This example shows that the FOR loop specifies an iteration over the elements
source attributeitem_with_versions.id_of_versions . For each source instance an
for each element in that attribute a target instance is created. The target attributeitem_id is
mapped in the same way for all the target instances which ofitem_version which correspond
to the same underlyingitem_with_versions . The target attributeversion_id is assigned
to the value of the iterator variableversion_iterator .

SCHEMA target; SCHEMA source;
ENTITY parent; ENTITY parent;
END_ENTITY; children : INTEGER;

END_ENTITY;
ENTITY child;
 parent : parent; END_SCHEMA; -- source
END_ENTITY;
END_SCHEMA; -- target

MAP tp : parent
FROM sp : parent
END_MAP;

MAP c : LIST [0:?] OF child
FROM p : parent
FOR i := 1 TO p.children
SELECT
 parent := parent();
END_MAP;
44

© ISO ISO/NWI 10303-

of the
ughout
Alternatively, one single MAP can be specified for this example as shown below.

MAP tp : parent, c : LIST [0:?] OF child
NAMED group_parent_and_child
FROM sp: parent
FOR i := 1 TO p.children
SELECT
 parent := parent@group_parent_and_child();
END_MAP;

This statement can only be used within a MAP declaration.

14. Built-in functions and procedures

15. Execution model semantics

The execution model semantics of EXPRESS-X are described according to the main concepts
language. The following source schema and corresponding source instance set will be used thro
this clause.

EXAMPLE 27 — .

SCHEMA EXAMPLE_SCHEMA;

ENTITY item;
 id : STRING;
 its_version : item_version;
 approved_by : STRING;
END_ENTITY;

ENTITY item_version;
 id : STRING;
 its_ddid : OPTIONAL ddid;
END_ENTITY;

ENTITY ddid;
 id : STRING;
END_ENTITY;

ENTITY person;
 name : STRING;
END_ENTITY;
45

ISO/NWI 10303- © ISO

nd the
made

to be

lable
inside
but as

a types
is then
mputa-
END_SCHEMA;

#1 = item(’i_1’,#3,’smith’);
#2 = item(’i_2’,#4,’jones’);
#3 = item_version(’iv_1’,#5);
#4 = item_version(’iv_2’);
#5 = ddid(’ddid_1’);
#6 = person(’smith’);
#7 = person(’jones’);
#8 = person(’miller’);

15.1 Reference of source (and target) schemas

During the execution of the EXPRESS-X specification schema, the underlying source schemas (a
underlying target schemas in case of the SCHEMA_MAP) together with their type definitions are
available.

15.2 Inclusion of externally defined functions

The referenced functions which are defined externally to the EXPRESS-X specification have
available for execution during runtime.

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.3 Import of mappings

All definitions and declarations which are specified in the referenced SCHEMA_MAP are avai
during the execution of the EXPRESS-X specification. They are handled as if they were specified
the referencing EXPRESS-X specification. That is, they shall be considered not as underlying
additional definitions and declarations.

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.4 Type mapping

The attribute assignments are identified which map between source and target attributes of dat
which are mapped in the TYPE_MAP declaration. The corresponding type mapping expression
used as the cast operation for that source attribute in the assignment. The same is true for the co
tion of the inverse mappings if the mapping implementation supports this conformance class.
46

© ISO ISO/NWI 10303-

t

they

uct of
ctly
ROM

e carte-

e valid
n be

Con-
tput
EXAMPLE 28 — In Ex. 15 the target typedmark is mapped to the source typedollar by mul-
tiplying dollar with the factor1.5 to derivedmark . Any attribute assignment where a targe
attribute of typedmark is mapped to some attributes where at least one of them is of typedol-
lar , the expression of the TYPE_MAP is first applied to the(se) source attribute(s). That is,
are first multiplied with the factor1.5 .

NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.5 The FROM clause

The FROM clause specifies the scope of the VIEW / MAP declaration. That is, the cartesian prod
all entities which are listed in the FROM clause (including those entities which are directly or indire
referenced by them) build the basis for further processing. Thus, the result of processing of the F
clause is an input data stream where instances of all specified entities are merged together by th
sian product. The execution model semantics will be detailed using the following example.

EXAMPLE 29 — A view is built over two (root) entities (the entityitem_version is directly
referenced by the root entityitem andddid is indirectly referenced).

VIEW items_and_persons
FROM item, person
END_VIEW;

NOTE — It shall be emphasized that the execution model semantics which are described below ar
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 29 ca
replaced by a corresponding MAP declaration and a corresponding target schema.

During runtime, the output stream of the view is built from the following entities:

• all entities which are specified in the FROM clause (i.e.,item and product in Ex. 27)

• all entities which are directly referenced by the FROM-clause entities (i.e.,item_version
which is referenced byitem) and

• all entities which are indirectly referenced by the FROM-clause entities (i.e.,ddid which is
referenced byitem_version which is itself referenced byitem).

The cartesian product is built over all entities which are explicitly specified in the FROM clause.
sequently, the data of the directly and indirectly referenced entities is implicitly part of the ou
stream.
47

ISO/NWI 10303- © ISO

ed in
s for

at is,

an

e valid
n be

s fol-
EXAMPLE 30 — After the processing of the FROM clause, the source data set as specifi
Ex. 27 is represented in the following way in the output stream. (0x... are used as internal ID
the instances)

It shall be emphasized that only those combinations ofitem anditem_version are part of the
output stream which are connected by relationships viaitem.its_version .

15.6 The WHERE clause

The WHERE clause specifies predicates all instances of the output stream have to fullfil. Th
according to those predicates the output stream is filtered.

EXAMPLE 31 — The following example extends the VIEW declaration of Ex. 29 by
WHERE clause to filter specific persons and to join items and persons.

VIEW items_and_persons
FROM i : item, p : person
WHERE (p.name = ’smith’ OR p.name = ’jones’) AND
 i.approved_by = p.name
END_VIEW;

NOTE — It shall be emphasized that the execution model semantics which are described below ar
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 31 ca
replaced by a corresponding MAP declaration and a corresponding target schema.

After the evaluation of the WHERE clause predicates, the output stream will be modified a
lows: all grey boxes will be filtered out.

item item_version ddid person

id its_version approved_by id its_ddid id name

0x01 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #6 smith

0x02 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #7 jones

0x03 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #8 miller

0x04 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #6 smith

0x05 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #7 jones

0x06 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #8 miller
48

© ISO ISO/NWI 10303-

BY

xes
15.7 The IDENTIFIED_BY clause

The IDENTIFIED_BY clause has effects during the execution of the mapping specification.

– Assignment of internal IDs to the instances of the output stream.

– Uniqueness according to the IDENTIFIED_BY expression has to be ensured.

EXAMPLE 32 — For the explanation of the execution model semantics of the IDENTIFIED_
clause another source schema, source instance set and view declaration is used.

ENTITY person;
 first_name : STRING;
 last_name : STRING;
END_ENTITY;

#1 = person(’marc’,’jones’);
#2 = person(’paul’,’jones’);
#3 = person(’paul’,’smith’);

VIEW view_persons
FROM p : person
IDENTIFIED_BY p.last_name;
SELECT
 name : STRING := p.last_name;
END_VIEW;

The result of evaluating the IDENTIFIED_BY clause are the following view instances (grey bo
will be filtered, black boxes are added).

item item_version ddid person

id its_version approved_by id its_ddid id name

0x01 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #6 smith

0x02 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #7 jones

0x03 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #8 miller

0x04 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #6 smith

0x05 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #7 jones

0x06 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #8 miller
49

ISO/NWI 10303- © ISO

e valid
n be

t of the

one

grey

e pro-
sign-
NOTE — It shall be emphasized that the execution model semantics which are described below ar
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 32 ca
replaced by a corresponding MAP declaration and a corresponding target schema.

15.8 The SELECT clause

The SELECT clause and the subsumed attribute assignments project attributes and/or entities ou
output stream.

EXAMPLE 33 — In this example, the execution model semantics are explained when only
entity is specified in the SELECT clause.

VIEW items_and_persons
FROM i : item, p : person
SELECT i;
END_VIEW;

After the evaluation of the SELECT clause, the output stream will be modified as follows: all
boxes will be filtered out.

Alternatively, if some attribute assignments are specified also attributes and/or entities ar
jected. In the following example, no additional expressions are specified in the attribute as

view terms view_person

internal ID corresponding source IDs name

source terms person

first_name last_name

0x01 #1 jones {#1,#2} marc jones

0x02 #2 paul jones

0x03 #3 smith #3 paul smith

item item_version ddid person

id its_version approved_by id its_ddid id name

0x01 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #6 smith

0x02 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #7 jones

0x03 #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #8 miller

0x04 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #6 smith

0x05 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #7 jones

0x06 #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #8 miller
50

© ISO ISO/NWI 10303-

e valid
x. 33

xecuted

nding
on.
mens in order to separate the different execution model semantics.

VIEW items_and_persons
FROM i : item, p : person
SELECT

END_VIEW;

NOTE — It shall be emphasized that the execution model semantics which are described below ar
for the execution of a VIEW as well as a MAP declaration. Thus, the VIEW declaration of Ex. 33 and E
can be replaced by a corresponding MAP declaration and a corresponding target schema.

15.9 Partitions

???

15.10 Network mapping

???

15.11 The FOR statement

The FOR statements specifies a loop so that for each instance of the output stream this loop is e
as many times as specified by the loop control statement (cf., Sect. 13.1).

EXAMPLE 34 — We assume that for each source instance of item exactly three correspo
target instances have to be generated. That is specified in the following mapping specificati

ENTITY item_with_duplicates;
 id : STRING;
 index : INTEGER;
END_ENTITY;

MAP iwd : LIST [3:3] OF item_with_duplicates
FROM i : item
SELECT
 FOR var := 1 TO 3
 id := i.id;
 index := var;
 END_FOR;
END_MAP;
51

ISO/NWI 10303- © ISO
NOTE — This concept is only available in a SCHEMA_MAP declaration.

15.12 Explicit binding

???

item_with_duplicates

id index

item item_version ddid

id its_version approved_by id its_ddi
d

id

0x01 #1 i_1 #3 smith 1 #3 iv_1 #5 #5 ddid_1

0x02 #1 i_1 #3 smith 2 #3 iv_1 #5 #5 ddid_1

0x03 #1 i_1 #3 smith 3 #3 iv_1 #5 #5 ddid_1

0x04 #2 i_2 #4 jones 1 #4 iv_2 #5 ddid_1

0x05 #2 i_2 #4 jones 2 #4 iv_2 #5 ddid_1

0x06 #2 i_2 #4 jones 3 #4 iv_2 #5 ddid_1
52

© ISO ISO/NWI 10303-

nts shall

o as
refer-
veloper
ecker.

mar
gram-

syn-
in the

a syn-
Annex A
(normative)

EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these eleme
obey.

NOTE — This syntax definition will result in ambiguous parsers if used directly. It has been written s
to convey information regarding the use of identifiers. The interpreted identifiers define tokens that are
ences to declared identifiers, and therefore should not resolve to simple_id. This requires a parser de
to enable identifier reference resolution and return the required reference token to a grammar rule ch

All of the grammar rules of EXPRESS specified in annex A of ISO 10303-11:1994 are also gram
rules of EXPRESS-X. In addition, the grammar rules specified in the remainder of this annex are
mar rules of EXPRESS-X.

A.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule
following clauses.

A.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE — This subclause follows the typographical convention that each keyword is represented by
tax rule whose left hand side is that keyword in uppercase.

NOTE — All the keywords of EXPRESS are also keywords of EXPRESS-X
1 CREATE = 'create'.

2 EACH = 'each'.

3 END_CREATE = 'end_create'.

4 END_EXTERNAL = 'end_external'.

5 END_FOR = 'end_for'.

6 END_INLINE_FUNCTION = 'end_inline_function'.

7 END_MAP = 'end_map'.

8 END_SCHEMA_MAP = 'end_schema_map'.

9 END_SCHEMA_VIEW = 'end_schema_view'.

10 END_TYPE_MAP = 'end_type_map'.

11 END_VIEW = 'end_view'.

12 EXTERNAL = 'external'.

13 IDENTIFIED_BY = 'identified_by'.

14 IMPORT_MAPPING = 'import_mapping'.
53

ISO/NWI 10303- © ISO
15 INLINE_FUNCTION = 'inline_function'.

16 INSTANCE_OF = 'instance_of'.

17 MAP = 'map'.

18 NAMED = 'named'.

19 PARTITION = 'partition'.

20 SCHEMA_MAP = 'schema_map'.

21 SCHEMA_VIEW = ’schema_view’.

22 SOURCE = 'source'.

23 TARGET = 'target'.

24 TYPE_MAP = 'type_map'.

25 VIEW = 'view'.

A.1.2 Character classes

26 digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' .

27 letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j'
 | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't'
 | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' .

28 simple_id = letter { letter | digit | '_' } .

A.1.3 Interpreted identifiers

NOTE — All interpreted identifiers of EXPRESS are also interpreted in EXPRESS-X
29 instance_ref = instance_id .

30 network_ref = network_id .

31 partition_ref = partition_id .

32 schema_map_ref = schema_map_id .

33 schema_view_ref = schema_view_id .

34 source_schema_ref = schema_ref .

35 target_schema_ref = schema_ref .

36 view_attribute_ref = view_attribute_id .

37 view_ref = view_id .

A.2 Grammar rules

38 attribute_reference = attribute_ref
| primary_extended attribute_qualifier .

39 boolean_expression = expression .

40 case_expr = CASE selector OF { case_expr_action }
[OTHERWISE ':' expression] END_CASE ';' .

41 case_expr_action = case_label { ',' case_label } ':' expression .
54

© ISO ISO/NWI 10303-
42 complex_entity_spec = entity_reference AND entity_reference { AND
entity_reference }.

43 create_map_decl = CREATE instance_id INSTANCE_OF
target_entity_reference ';' map_attr_decl_stmt_list END_CREATE ';' .

44 create_view_decl = CREATE instance_id INSTANCE_OF VIEW view_reference
';' view_attr_decl_stmt_list END_CREATE ';' .

45 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .

46 entity_qualifier = '.' entity_ref .

47 entity_reference = entity_ref | primary_extended entity_qualifier .

48 extent_reference = source_entity_reference | view_reference .

49 external_functions_spec = EXTERNAL function_head { function_head }
 END_EXTERNAL ';' .

50 for_expr = foreach_expr | forloop_expr .

51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg
 { AND variable_id IN foreach_in_clause_arg }
 [from_clause] [where_clause]
 RETURN map_attr_assgnmt_expr ';' .

52 foreach_in_clause_arg = attribute_reference | view_attribute_reference
| extent_reference .

53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .

54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .

55 from_clause = FROM ('(' from_parameter_list ')'
 | from_parameter_list) .

56 from_paramete r = [parameter_id { parameter_id } ':'] extent_reference
.

57 from_parameter_list = from_parameter { ',' from_parameter } .

58 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.

59 inline_funct_head = INLINE_FUNCTION ['(' formal_parameter { ';'
formal_parameter } ')'] ':' parameter_type ';' .

60 inline_function_decl = inline_funct_head [algorithm_head]
 stmt { stmt } END_INLINE_FUNCTION ';' .

61 inline_view_decl = VIEW from_clause [where_clause]
 [view_project_clause] END_VIEW ';' .

62 instance_id = simple_id .

63 instance_qualifier = '.' instance_ref .

64 instantiation_foreach_control = EACH variable_id
 IN source_attribute_reference
 [WITH_INDEX variable_id]
 { AND variable_id
 IN source_attribute_reference
 [WITH_INDEX variable_id] } .

65 instantiation_loop_control = instantiation_foreach_control
 | repeat_control .

66 map_attr_assgnmt_expr = expression | map_cond_attr_expr |
map_case_expr | for_expr | inline_function_decl | map_call .

67 map_attr_decl_stmt_list = map_attribute_declaration
 { map_attribute_declaration } .
55

ISO/NWI 10303- © ISO
68 map_attribute_decl_block = map_attr_decl_stmt_list .

69 map_attribute_declaration = [entity_reference '.'] attribute_ref
':=' map_attr_assgnmt_expr ';' .

70 map_call = entity_reference ['@' network_or_partition_qualification]
 '(' expression { ',' expression } ')' .

71 map_case_expr = CASE selector OF { map_case_expr_action }
[OTHERWISE ':' map_attr_assgnmt_expr] END_CASE ';' .

72 map_case_expr_action = case_label { ',' case_label } ':'
map_attr_assgnmt_expr .

73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr
 [ELSE map_attr_assgnmt_expr] END_IF ';' .

74 map_decl = MAP map_decl_header
 ((map_decl_body { map_partitions }) | map_decl_body)
 END_MAP ';' .

75 map_decl_body = ((from_clause [identified_by_clause]) |
 subtype_of_clause)
 [where_clause]
 { entity_instantiation_loop }
 [map_project_clause] .

76 map_decl_header = target_entity_ref_list [NAMED network_id] .

77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename
 { ',' schema_map_or_view_ref_or_rename } ’;’.

78 map_partition = PARTITION [partition_id ':'] map_decl_body .

79 map_partitions = map_partition { map_partition } .

80 map_project_clause = SELECT (extent_reference
 | map_attribute_decl_block).

81 network_id = simple_id .

82 network_or_partition_qualification = network_ref
| [network_ref '.'] partition_ref .

83 partition_id = simple_id .

84 primary_extended = qualifiable_factor_extended { qualifier_extended }
.

85 qualifiable_factor_extended = qualifiable_factor | schema_map_ref |
schema_view_ref | view_ref | map_call | view_call |
view_attribute_ref | instance_ref .

86 qualifier_extended = qualifier | view_qualifier |
instance_qualifier | entity_qualifier | view_attribute_qualifier .

87 reference_clause = REFERENCE FROM foreign_ref
 ['(' resource_or_rename
 { ',' resource_or_rename } ')'] ';' .

88 schema_alias_id = schema_id .

89 schema_map_alias_id = schema_map_id .

90 schema_map_body_element = function_decl | procedure_decl | view_decl
 | create_view_decl | map_decl
 | create_map_decl .

91 schema_map_body_element_list = schema_map_body_element
 { schema_map_body_element } .
56

© ISO ISO/NWI 10303-
92 schema_map_decl = SCHEMA_MAP schema_map_id
 target_interface_spec source_interface_spec
 { map_interface_spec } { external_functions_spec }
 { type_mapping_stmt } [constant_decl]
 schema_map_body_element_list END_SCHEMA_MAP ';' .

93 schema_map_id = simple_id .

94 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename
 | schema_view_ref_or_rename .

95 schema_map_ref_or_rename = [schema_map_alias_id ':']
 schema_map_ref .

96 schema_ref_or_rename = [schema_alias_id ':'] schema_ref .

97 schema_view_alias_id = schema_view_id .

98 schema_view_body_element = function_decl | procedure_decl | view_decl
 | create_view_decl .

99 schema_view_body_element_list = schema_view_body_element {
schema_view_body_element } .

100 schema_view_decl = SCHEMA_VIEW schema_view_id { reference_clause }
 [constant_decl]
 schema_view_body_element_list END_SCHEMA_VIEW ';' .

101 schema_view_id = simple_id .

102 schema_view_ref_or_rename = [schema_view_alias_id ':']
 schema_view_ref .

103 source_attribute_reference = attribute_reference |
view_attribute_reference .

104 source_entity_reference = entity_reference .

105 source_interface_spec = SOURCE schema_ref_or_rename
 { ',' schema_ref_or_rename } ';' .

106 source_type_reference = type_reference .

107 subtype_of_clause = SUBTYPE OF view_or_entity_reference
 [PARTITION partition_ref] ';' .

108 syntax = schema_map_decl | schema_view_decl .

109 target_entity_alias_id = entity_id .

110 target_entity_ref_list = target_entity_ref_list_el
 { ',' target_entity_ref_list_el } .

111 target_entity_ref_list_el = [target_entity_alias_id
 ':' [LIST bound_spec OF]]
 target_entity_reference .

112 target_entity_reference = entity_reference | complex_entity_spec |
target_schema_ref '.' '(' complex_entity_spec ')' .

113 target_interface_spec = TARGET schema_ref_or_rename
 { ',' schema_ref_or_rename } ';' .

114 target_type_reference = type_reference .

115 type_assgnmt_expr = expression | case_expr .

116 type_map_stmt_body = [schema_ref '.'] base_type ':='
type_assgnmt_expr ';'.
57

ISO/NWI 10303- © ISO
117 type_mapping_stmt = TYPE_MAP target_type_reference
{ target_type_reference }
FROM source_type_reference { source_type_reference } ';'
{ type_map_stmt_body } END_TYPE_MAP ';' .

118 type_reference = [schema_ref '.'] type_ref .

119 view_attr_assgnmt_expr = expression | view_cond_attr_expr |
view_case_expr | inline_view_decl | view_call .

120 view_attr_decl_stmt_list = view_attribute_decl
 { view_attribute_decl } .

121 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.']
 base_type ':=' view_attr_assgnmt_expr ';' .

122 view_attribute_id = simple_id .

123 view_attribute_qualifier = '.' view_attribute_ref .

124 view_attribute_reference = view_attribute_ref
| primary_extended view_attribute_qualifier .

125 view_call = view_reference
 '(' view_call_argument { ',' view_call_argument } ')' .

126 view_call_argument = expression | view_call .

127 view_case_expr = CASE selector OF { view_case_expr_action }
[OTHERWISE ':' view_attr_assgnmt_expr] END_CASE ';' .

128 view_case_expr_action = case_label { ',' case_label } ':'
view_attr_assgnmt_expr .

129 view_cond_attr_expr = IF boolean_expression
 THEN view_attr_assgnmt_expr
 [ELSE view_attr_assgnmt_expr] END_IF ';' .

130 view_decl = VIEW view_id ';' [subtype_of_clause]
 (view_partitions | view_decl_body)
 END_VIEW ';' .

131 view_decl_body = [from_clause] [identified_by_clause]
 [where_clause] [view_project_clause] .

132 view_id = simple_id .

133 view_or_entity_reference = view_reference | entity_reference .

134 view_partition = PARTITION [partition_id ':'] view_decl_body .

135 view_partitions = view_partition { view_partition } .

136 view_project_clause = SELECT (extent_reference
 | view_attr_decl_stmt_list) .

137 view_qualifier = ’.’ view_ref .

138 view_reference = view_ref | primary_extended ’.’ view_qualifier .

A.3 EXPRESS Syntax

139 add_like_op = '+'| '-' | OR | XOR .

140 bound_1 = numeric_expression .

141 bound_2 = numeric_expression .

142 bound_spec = '[' bound_1 ':' bound_2 ']' .

143 built_in_constant = CONST_E | PI | SELF | '?' .
58

© ISO ISO/NWI 10303-
144 built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS
| EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND

 | LOINDEX | LOG | LOG2 | LOG10 | NVL | ODD | ROLESOF
| SIN | SIZEOF | SQRT | TAN | TYPEOF | USEDIN | VALUE

 | VALUE_IN | VALUE_UNIQUE .

145 constant_factor = built_in_constant | constant_ref .

146 enumeration_reference = [type_ref '.'] enumeration_ref .

147 expression = simple_expression [rel_op_extended simple_expression] .

148 factor = simple_factor ['**' simple_factor] .

149 logical_expression = expression .

150 numeric_expression = simple_expression .

151 repeat_control = [increment_control] [while_control]
 [until_control] .

152 simple_factor = aggregate_initializer | entity_constructor
 | enumeration_reference | interval | query_expression
 | ([unary_op] ('(' expression ')' | primary)) .

A.4 Cross reference listing
59

ISO/NWI 10303- © ISO

fini-
Annex B
(informative)

Bibliography

EXPRESS-V language (ISO TC184/SC4/WG5 N251).

EXPRESS-M language (ISO TC184/SC4/WG5 N243).

BRITTY language.

Wirth, Niklaus, ”What can we do about the unnecessary diversity of notations for syntactic de
tions?,” Communications of the ACM, November 1977, v. 20, no. 11, p. 822.
60

	Contents
	1. Scope 1
	2. Normative references 2
	3. Definitions 2
	3.1 Terms defined in ISO 10303�1 2
	3.2 Terms defined in ISO 10303�11 2
	3.3 Other definitions 3

	4. Conformance requirements 4
	4.1 Formal specifications written in EXPRESS�X 4
	4.1.1 Lexical language 4

	4.2 Implementations of EXPRESS�X 5
	4.2.1 EXPRESS�X language parser 5
	4.2.2 EXPRESS�X mapping engine 5

	4.3 Conformance classes 7

	5. Fundamental principles 7
	6. Language specification syntax 9
	7. Basic language elements 11
	7.1 Reserved words 11
	7.1.1 Keywords 11

	8. Data types 12
	8.1 Complex entity data type 12
	8.2 View data type 13
	8.3 Extent data type 13

	9. Declarations 14
	9.1 Schema_view declaration 14
	9.2 Schema_map declaration 15
	9.3 Common clauses of the VIEW and MAP declarations 17
	9.3.1 The FROM clause 17
	9.3.2 The WHERE clause 17
	9.3.3 Identification of view and target instances 18

	9.4 View declaration 20
	9.4.1 View attributes 21
	9.4.2 View partitions 22
	9.4.3 Specifying subtype views 23

	9.5 Map declaration 23
	9.5.1 Header of the MAP declaration 24
	9.5.2 The SELECT clause 25
	9.5.3 Partitions within a MAP declaration 25
	9.5.4 Inheritance 26

	9.6 Create declaration 27
	9.7 Constant declaration 27
	9.8 Function declaration 27
	9.9 Procedure declaration 27
	9.10 Rule declaration 27
	9.11 Type map declaration 27

	10. Scope and visibility 28
	10.1 Scope rules 29
	10.2 Visibility rules 29
	10.3 Explicit item rules 29
	10.3.1 Schema_view 29
	10.3.2 View 30
	10.3.3 View partition label 30
	10.3.4 View expression 30

	11. Interface specification 30
	11.1 Reference interface specification 31
	11.2 Implicit interfaces 32
	11.3 SCHEMA_MAP interfaces 32
	11.3.1 Source schema interface 32
	11.3.2 Target schema interface 32
	11.3.3 Map interface 33
	11.3.4 External functions 33

	12. Expressions 33
	12.1 Explicit binding 33
	12.2 Partial explicit binding 36
	12.3 Inline views 37
	12.4 Operations on extents 37
	12.5 View expression evaluation 37
	12.6 FOR expression 37
	12.7 Conditional expression 41
	12.8 CASE expression 41

	13. Executable statements 42
	13.1 FOR clause 42

	14. Built-in functions and procedures 45
	15. Execution model semantics 45
	15.1 Reference of source (and target) schemas 46
	15.2 Inclusion of externally defined functions 46
	15.3 Import of mappings 46
	15.4 Type mapping 46
	15.5 The FROM clause 47
	15.6 The WHERE clause 48
	15.7 The IDENTIFIED_BY clause 49
	15.8 The SELECT clause 50
	15.9 Partitions 51
	15.10 Network mapping 51
	15.11 The FOR statement 51
	15.12 Explicit binding 52

	Foreword
	Introduction
	Industrial automation systems and integration — Product data representation and exchange — Part 1...
	1. Scope
	2. Normative references
	3. Definitions
	3.1 Terms defined in ISO 10303�1
	3.2 Terms defined in ISO 10303�11
	3.3 Other definitions
	3.3.1 binding: an ordered tuple of values taken from source data entity extents or view extents a...
	3.3.2 binding extent: the set of bindings corresponding to source data entity extents and view ex...
	3.3.3 evaluation (of a view or map): the application of a binding to a view or map. Evaluation of...
	3.3.4 inverse evaluation (of a view / map): the updating of source data values through the update...
	3.3.5 map: a declaration that defines a relationship between data of one (or more) source entity ...
	3.3.6 view: an alternative organization of the information in an EXPRESS model.
	3.3.7 view extent: an aggregation data type having as its domain a collection of values of a give...
	3.3.8 view data type: a representation of a view. A view data type establishes a domain of values...
	3.3.9 view instance: a named unit of data which represents an alternative organization of source ...

	4. Conformance requirements
	4.1 Formal specifications written in EXPRESS�X
	4.1.1 Lexical language

	4.2 Implementations of EXPRESS�X
	4.2.1 EXPRESS�X language parser
	4.2.2 EXPRESS�X mapping engine
	4.2.2.1 Support of VIEW declarations
	4.2.2.2 Support of MAP declarations
	4.2.2.3 Support of the propagation of updates
	4.2.2.4 Push mapping
	4.2.2.5 Pull mapping
	4.2.2.6 Support of constraint checking

	4.3 Conformance classes

	5. Fundamental principles
	EXAMPLE 1 — The extents of part and part_usage_approval below are the sets of entity instances (#...

	6. Language specification syntax
	7. Basic language elements
	7.1 Reserved words
	7.1.1 Keywords
	Table 1 — Additional EXPRESS�X keywords

	8. Data types
	8.1 Complex entity data type
	Rules and restrictions:
	a) Each entity_ref shall be a reference to an entity which is visible in the current scope.
	b) The referenced complex entity data type shall describe a valid domain within some schema (see ...
	c) A given entity_ref shall occur at most once within a complex_entity_ref.

	EXAMPLE 2 — Given the following entity declarations:

	8.2 View data type
	8.3 Extent data type
	Rules and restrictions:
	a) extent_reference shall be a reference to an extent which is visible in the current scope.

	EXAMPLE 3 — The following declaration defines a view data type and extent data type, each designa...

	9. Declarations
	9.1 Schema_view declaration
	EXAMPLE 4 — ap203_arm names a schema_view that may contain declarations defining a view over the ...

	9.2 Schema_map declaration
	EXAMPLE 5 — iges2step names a schema_map that may contain declarations for translating geometry d...
	EXAMPLE 6 — This example illustrates the use of required EXPRESS-X declarations. t1, t2, t3, s1 a...

	9.3 Common clauses of the VIEW and MAP declarations
	9.3.1 The FROM clause
	Rules and restrictions:
	a) parameter_ids shall be unique within the scope of the MAP or VIEW declaration.

	9.3.2 The WHERE clause
	9.3.3 Identification of view and target instances
	Rules and restrictions:
	a) expression shall not evaluate to a value of type AGGREGATE.

	EXAMPLE 7 — In the following, the source data set may contain multiple value equivalent instances...
	EXAMPLE 8 — Assuming that one instance of the target entity department corresponds to a set of in...

	9.4 View declaration
	EXAMPLE 9 — The following view collects the information about persons serving in roles within org...
	Rules and restrictions:
	a) If in a view_decl a subtype_of_clause is specified, no from_clause shall be declared in the vi...
	b) If no subtype_of_clause is specified, the from_clause in any view_decl_body of this view_decl ...
	c) Each attribute expression reference declared in the view declaration shall be unique within th...

	9.4.1 View attributes
	Rules and restrictions:
	a) The expression (expression, view_cond_attr_expr, view_case_expr, inline_view_decl, view_call) ...
	b) Every view attribute of a view instance shall have a value.

	EXAMPLE 10 — circle names a view extent defined to contain all ellipse instances with equal lengt...

	9.4.2 View partitions
	EXAMPLE 11 — In ISO 10303-201, the application object organization may be mapped to either a pers...
	Rules and restrictions:
	a) All partitions of a VIEW declaration shall define the same attributes (including names and types)
	b) The attributes of a VIEW declaration shall appear in the same order in each of its partitions..

	9.4.3 Specifying subtype views
	EXAMPLE 12 — The following view illustrates subtyping. The view male defines an additional member...

	9.5 Map declaration
	9.5.1 Header of the MAP declaration
	Rules and restrictions:
	a) For each entity type appearing in the target_entity_ref_list none of its supertypes shall appe...

	EXAMPLE 13 — In the example below, a pump in the source data model is mapped to a set of target e...

	9.5.2 The SELECT clause
	9.5.3 Partitions within a MAP declaration
	Rules and restrictions:
	a) If the MAP declaration contains more than one partition, the partitions shall be named.
	b) All partitions must define the same attributes (attribute_ref) and types.

	9.5.4 Inheritance
	EXAMPLE 14 — Inheritance for MAP declaration.

	9.6 Create declaration
	9.7 Constant declaration
	9.8 Function declaration
	9.9 Procedure declaration
	9.10 Rule declaration
	9.11 Type map declaration
	EXAMPLE 15 — The following specifies the mapping between the types dollar and dmark.
	Rules and restrictions:
	a) Body is not needed if just renaming.
	b) No more than two expressions; if second is omitted then reverse mapping is implicit.
	c) The two expressions shall be inverses of each other.
	d) No entity instances shall be mapped by the TYPE_MAP. The base type shall not be an entity type.

	10. Scope and visibility
	Table 2 — Scope and identifier defining items
	10.1 Scope rules
	10.2 Visibility rules
	10.3 Explicit item rules
	10.3.1 Schema_view
	10.3.2 View
	10.3.3 View partition label
	10.3.4 View expression

	11. Interface specification
	11.1 Reference interface specification
	Rules and restrictions:

	11.2 Implicit interfaces
	11.3 SCHEMA_MAP interfaces
	11.3.1 Source schema interface
	11.3.2 Target schema interface
	11.3.3 Map interface
	11.3.4 External functions
	EXAMPLE 16 — A mapping may call an external function to convert geometry from advanced BREP into ...

	12. Expressions
	12.1 Explicit binding
	EXAMPLE 17 — Explicit binding concept.
	EXAMPLE 18 — Explicit bindings are useful for describing a relationship between two views: :

	12.2 Partial explicit binding
	EXAMPLE 19 — In the following, the various versions associated with a part are collected by using...

	12.3 Inline views
	EXAMPLE 20 — In the following example the versions of a part are collected by using an inline view.

	12.4 Operations on extents
	12.5 View expression evaluation
	12.6 FOR expression
	EXAMPLE 21 — FOR expression.
	EXAMPLE 22 — Nested FOR expression. The example 21 is extended as follows.
	EXAMPLE 23 — Parallel iteration with the FOR expression.
	Rules and restrictions:
	a) The target attribute of the attribute assignment statement where the FOR expression is used in...

	12.7 Conditional expression
	12.8 CASE expression
	EXAMPLE 24 — CASE expression.

	13. Executable statements
	13.1 FOR clause
	Rules and restrictions:
	a) variable_id after the keyword EACH is of the same type as the elements of source_attribute_ref...
	b) variable_id after the keyword INDEXING is of type NUMBER with values greater than one.

	EXAMPLE 25 — In the following example, all item versions of one item are grouped together in the ...
	EXAMPLE 26 — In the following example, all item versions of one item are grouped together in the ...

	14. Built-in functions and procedures
	15. Execution model semantics
	EXAMPLE 27 — .
	15.1 Reference of source (and target) schemas
	15.2 Inclusion of externally defined functions
	15.3 Import of mappings
	15.4 Type mapping
	EXAMPLE 28 — In Ex. 15 the target type dmark is mapped to the source type dollar by multiplying d...

	15.5 The FROM clause
	EXAMPLE 29 — A view is built over two (root) entities (the entity item_version is directly refere...
	EXAMPLE 30 — After the processing of the FROM clause, the source data set as specified in Ex. 27 ...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.6 The WHERE clause
	EXAMPLE 31 — The following example extends the VIEW declaration of Ex. 29 by an WHERE clause to f...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.7 The IDENTIFIED_BY clause
	EXAMPLE 32 — For the explanation of the execution model semantics of the IDENTIFIED_BY clause ano...

	view terms
	view_person
	internal ID
	corresponding source IDs
	name
	source terms
	person
	first_name
	last_name
	0x01
	#1
	jones
	{#1,#2}
	marc
	jones
	0x02
	#2
	paul
	jones
	0x03
	#3
	smith
	#3
	paul
	smith
	15.8 The SELECT clause
	EXAMPLE 33 — In this example, the execution model semantics are explained when only one entity is...

	item
	item_version
	ddid
	person
	id
	its_version
	approved_by
	id
	its_ddid
	id
	name
	0x01
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#6
	smith
	0x02
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#7
	jones
	0x03
	#1
	i_1
	#3
	smith
	#3
	iv_1
	#5
	#5
	ddid_1
	#8
	miller
	0x04
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#6
	smith
	0x05
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#7
	jones
	0x06
	#2
	i_2
	#4
	jones
	#4
	iv_2
	#5
	ddid_1
	#8
	miller
	15.9 Partitions
	15.10 Network mapping
	15.11 The FOR statement
	EXAMPLE 34 — We assume that for each source instance of item exactly three corresponding target i...

	item_with_duplicates
	id
	index
	item
	item_version
	ddid
	id
	its_version
	approved_by
	id
	its_ddi d
	id
	0x01
	#1
	i_1
	#3
	smith
	1
	#3
	iv_1
	#5
	#5
	ddid_1
	0x02
	#1
	i_1
	#3
	smith
	2
	#3
	iv_1
	#5
	#5
	ddid_1
	0x03
	#1
	i_1
	#3
	smith
	3
	#3
	iv_1
	#5
	#5
	ddid_1
	0x04
	#2
	i_2
	#4
	jones
	1
	#4
	iv_2
	#5
	ddid_1
	0x05
	#2
	i_2
	#4
	jones
	2
	#4
	iv_2
	#5
	ddid_1
	0x06
	#2
	i_2
	#4
	jones
	3
	#4
	iv_2
	#5
	ddid_1
	15.12 Explicit binding

	Annex A (normative) EXPRESS�X language syntax
	A.1 Tokens
	A.1.1 Keywords
	1 CREATE = 'create'.
	2 EACH = 'each'.
	3 END_CREATE = 'end_create'.
	4 END_EXTERNAL = 'end_external'.
	5 END_FOR = 'end_for'.
	6 END_INLINE_FUNCTION = 'end_inline_function'.
	7 END_MAP = 'end_map'.
	8 END_SCHEMA_MAP = 'end_schema_map'.
	9 END_SCHEMA_VIEW = 'end_schema_view'.
	10 END_TYPE_MAP = 'end_type_map'.
	11 END_VIEW = 'end_view'.
	12 EXTERNAL = 'external'.
	13 IDENTIFIED_BY = 'identified_by'.
	14 IMPORT_MAPPING = 'import_mapping'.
	15 INLINE_FUNCTION = 'inline_function'.
	16 INSTANCE_OF = 'instance_of'.
	17 MAP = 'map'.
	18 NAMED = 'named'.
	19 PARTITION = 'partition'.
	20 SCHEMA_MAP = 'schema_map'.
	21 SCHEMA_VIEW = ’schema_view’.
	22 SOURCE = 'source'.
	23 TARGET = 'target'.
	24 TYPE_MAP = 'type_map'.
	25 VIEW = 'view'.

	A.1.2 Character classes
	26 digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' .
	27 letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | '...
	28 simple_id = letter { letter | digit | '_' } .

	A.1.3 Interpreted identifiers
	29 instance_ref = instance_id .
	30 network_ref = network_id .
	31 partition_ref = partition_id .
	32 schema_map_ref = schema_map_id .
	33 schema_view_ref = schema_view_id .
	34 source_schema_ref = schema_ref .
	35 target_schema_ref = schema_ref .
	36 view_attribute_ref = view_attribute_id .
	37 view_ref = view_id .

	A.2 Grammar rules
	38 attribute_reference = attribute_ref | primary_extended attribute_qualifier .
	39 boolean_expression = expression .
	40 case_expr = CASE selector OF { case_expr_action } [OTHERWISE ':' expression] END_CASE ';' .
	41 case_expr_action = case_label { ',' case_label } ':' expression .
	42 complex_entity_spec = entity_reference AND entity_reference { AND entity_reference }.
	43 create_map_decl = CREATE instance_id INSTANCE_OF target_entity_reference ';' map_attr_decl_stm...
	44 create_view_decl = CREATE instance_id INSTANCE_OF VIEW view_reference ';' view_attr_decl_stmt_...
	45 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .
	46 entity_qualifier = '.' entity_ref .
	47 entity_reference = entity_ref | primary_extended entity_qualifier .
	48 extent_reference = source_entity_reference | view_reference .
	49 external_functions_spec = EXTERNAL function_head { function_head } END_EXTERNAL ';' .
	50 for_expr = foreach_expr | forloop_expr .
	51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND variable_id IN foreach_in_c...
	52 foreach_in_clause_arg = attribute_reference | view_attribute_reference | extent_reference .
	53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .
	54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .
	55 from_clause = FROM ('(' from_parameter_list ')' | from_parameter_list) .
	56 from_parameter = [parameter_id { parameter_id } ':'] extent_reference .
	57 from_parameter_list = from_parameter { ',' from_parameter } .
	58 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.
	59 inline_funct_head = INLINE_FUNCTION ['(' formal_parameter { ';' formal_parameter } ')'] ':' ...
	60 inline_function_decl = inline_funct_head [algorithm_head] stmt { stmt } END_INLINE_FUNCTION ...
	61 inline_view_decl = VIEW from_clause [where_clause] [view_project_clause] END_VIEW ';' .
	62 instance_id = simple_id .
	63 instance_qualifier = '.' instance_ref .
	64 instantiation_foreach_control = EACH variable_id IN source_attribute_reference [WITH_INDEX va...
	65 instantiation_loop_control = instantiation_foreach_control | repeat_control .
	66 map_attr_assgnmt_expr = expression | map_cond_attr_expr | map_case_expr | for_expr | inline_fu...
	67 map_attr_decl_stmt_list = map_attribute_declaration { map_attribute_declaration } .
	68 map_attribute_decl_block = map_attr_decl_stmt_list .
	69 map_attribute_declaration = [entity_reference '.'] attribute_ref ':=' map_attr_assgnmt_expr ...
	70 map_call = entity_reference ['@' network_or_partition_qualification] '(' expression { ',' ex...
	71 map_case_expr = CASE selector OF { map_case_expr_action } [OTHERWISE ':' map_attr_assgnmt_exp...
	72 map_case_expr_action = case_label { ',' case_label } ':' map_attr_assgnmt_expr .
	73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr [ELSE map_attr_assgnmt_...
	74 map_decl = MAP map_decl_header ((map_decl_body { map_partitions }) | map_decl_body) END_MAP ...
	75 map_decl_body = ((from_clause [identified_by_clause]) | subtype_of_clause) [where_claus...
	76 map_decl_header = target_entity_ref_list [NAMED network_id] .
	77 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename { ',' schema_map_or_view_...
	78 map_partition = PARTITION [partition_id ':'] map_decl_body .
	79 map_partitions = map_partition { map_partition } .
	80 map_project_clause = SELECT (extent_reference | map_attribute_decl_block).
	81 network_id = simple_id .
	82 network_or_partition_qualification = network_ref | [network_ref '.'] partition_ref .
	83 partition_id = simple_id .
	84 primary_extended = qualifiable_factor_extended { qualifier_extended } .
	85 qualifiable_factor_extended = qualifiable_factor | schema_map_ref | schema_view_ref | view_ref...
	86 qualifier_extended = qualifier | view_qualifier | instance_qualifier | entity_qualifier | view...
	87 reference_clause = REFERENCE FROM foreign_ref ['(' resource_or_rename { ',' resource_or_renam...
	88 schema_alias_id = schema_id .
	89 schema_map_alias_id = schema_map_id .
	90 schema_map_body_element = function_decl | procedure_decl | view_decl | create_view_decl | map_...
	91 schema_map_body_element_list = schema_map_body_element { schema_map_body_element } .
	92 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec source_interface_spec { map_i...
	93 schema_map_id = simple_id .
	94 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename | schema_view_ref_or_rename .
	95 schema_map_ref_or_rename = [schema_map_alias_id ':'] schema_map_ref .
	96 schema_ref_or_rename = [schema_alias_id ':'] schema_ref .
	97 schema_view_alias_id = schema_view_id .
	98 schema_view_body_element = function_decl | procedure_decl | view_decl | create_view_decl .
	99 schema_view_body_element_list = schema_view_body_element { schema_view_body_element } .
	100 schema_view_decl = SCHEMA_VIEW schema_view_id { reference_clause } [constant_decl] schema_v...
	101 schema_view_id = simple_id .
	102 schema_view_ref_or_rename = [schema_view_alias_id ':'] schema_view_ref .
	103 source_attribute_reference = attribute_reference | view_attribute_reference .
	104 source_entity_reference = entity_reference .
	105 source_interface_spec = SOURCE schema_ref_or_rename { ',' schema_ref_or_rename } ';' .
	106 source_type_reference = type_reference .
	107 subtype_of_clause = SUBTYPE OF view_or_entity_reference [PARTITION partition_ref] ';' .
	108 syntax = schema_map_decl | schema_view_decl .
	109 target_entity_alias_id = entity_id .
	110 target_entity_ref_list = target_entity_ref_list_el { ',' target_entity_ref_list_el } .
	111 target_entity_ref_list_el = [target_entity_alias_id ':' [LIST bound_spec OF]] target_enti...
	112 target_entity_reference = entity_reference | complex_entity_spec | target_schema_ref '.' '(' ...
	113 target_interface_spec = TARGET schema_ref_or_rename { ',' schema_ref_or_rename } ';' .
	114 target_type_reference = type_reference .
	115 type_assgnmt_expr = expression | case_expr .
	116 type_map_stmt_body = [schema_ref '.'] base_type ':=' type_assgnmt_expr ';'.
	117 type_mapping_stmt = TYPE_MAP target_type_reference { target_type_reference } FROM source_type...
	118 type_reference = [schema_ref '.'] type_ref .
	119 view_attr_assgnmt_expr = expression | view_cond_attr_expr | view_case_expr | inline_view_decl...
	120 view_attr_decl_stmt_list = view_attribute_decl { view_attribute_decl } .
	121 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.'] base_type ':=' view_att...
	122 view_attribute_id = simple_id .
	123 view_attribute_qualifier = '.' view_attribute_ref .
	124 view_attribute_reference = view_attribute_ref | primary_extended view_attribute_qualifier .
	125 view_call = view_reference '(' view_call_argument { ',' view_call_argument } ')' .
	126 view_call_argument = expression | view_call .
	127 view_case_expr = CASE selector OF { view_case_expr_action } [OTHERWISE ':' view_attr_assgnmt...
	128 view_case_expr_action = case_label { ',' case_label } ':' view_attr_assgnmt_expr .
	129 view_cond_attr_expr = IF boolean_expression THEN view_attr_assgnmt_expr [ELSE view_attr_assg...
	130 view_decl = VIEW view_id ';' [subtype_of_clause] (view_partitions | view_decl_body) END_V...
	131 view_decl_body = [from_clause] [identified_by_clause] [where_clause] [view_project_cla...
	132 view_id = simple_id .
	133 view_or_entity_reference = view_reference | entity_reference .
	134 view_partition = PARTITION [partition_id ':'] view_decl_body .
	135 view_partitions = view_partition { view_partition } .
	136 view_project_clause = SELECT (extent_reference | view_attr_decl_stmt_list) .
	137 view_qualifier = ’.’ view_ref .
	138 view_reference = view_ref | primary_extended ’.’ view_qualifier .

	A.3 EXPRESS Syntax
	139 add_like_op = '+'| '-' | OR | XOR .
	140 bound_1 = numeric_expression .
	141 bound_2 = numeric_expression .
	142 bound_spec = '[' bound_1 ':' bound_2 ']' .
	143 built_in_constant = CONST_E | PI | SELF | '?' .
	144 built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS | EXP | FORMAT | HIBOUN...
	145 constant_factor = built_in_constant | constant_ref .
	146 enumeration_reference = [type_ref '.'] enumeration_ref .
	147 expression = simple_expression [rel_op_extended simple_expression] .
	148 factor = simple_factor ['**' simple_factor] .
	149 logical_expression = expression .
	150 numeric_expression = simple_expression .
	151 repeat_control = [increment_control] [while_control] [until_control] .
	152 simple_factor = aggregate_initializer | entity_constructor | enumeration_reference | interval...

	A.4 Cross reference listing

	Annex B (informative) Bibliography

